sage:from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(11025, base_ring=CyclotomicField(210))
M = H._module
chi = DirichletCharacter(H, M([35,84,95]))
pari:[g,chi] = znchar(Mod(10181,11025))
| Modulus: | \(11025\) | |
| Conductor: | \(11025\) |
sage:chi.conductor()
pari:znconreyconductor(g,chi)
|
| Order: | \(210\) |
sage:chi.multiplicative_order()
pari:charorder(g,chi)
|
| Real: | no |
| Primitive: | yes |
sage:chi.is_primitive()
pari:#znconreyconductor(g,chi)==1
|
| Minimal: | yes |
| Parity: | even |
sage:chi.is_odd()
pari:zncharisodd(g,chi)
|
\(\chi_{11025}(131,\cdot)\)
\(\chi_{11025}(416,\cdot)\)
\(\chi_{11025}(446,\cdot)\)
\(\chi_{11025}(731,\cdot)\)
\(\chi_{11025}(761,\cdot)\)
\(\chi_{11025}(1046,\cdot)\)
\(\chi_{11025}(1361,\cdot)\)
\(\chi_{11025}(1706,\cdot)\)
\(\chi_{11025}(2021,\cdot)\)
\(\chi_{11025}(2306,\cdot)\)
\(\chi_{11025}(2336,\cdot)\)
\(\chi_{11025}(2621,\cdot)\)
\(\chi_{11025}(2936,\cdot)\)
\(\chi_{11025}(2966,\cdot)\)
\(\chi_{11025}(3281,\cdot)\)
\(\chi_{11025}(3566,\cdot)\)
\(\chi_{11025}(3881,\cdot)\)
\(\chi_{11025}(3911,\cdot)\)
\(\chi_{11025}(4511,\cdot)\)
\(\chi_{11025}(4541,\cdot)\)
\(\chi_{11025}(4856,\cdot)\)
\(\chi_{11025}(5141,\cdot)\)
\(\chi_{11025}(5171,\cdot)\)
\(\chi_{11025}(5456,\cdot)\)
\(\chi_{11025}(5486,\cdot)\)
\(\chi_{11025}(5771,\cdot)\)
\(\chi_{11025}(6086,\cdot)\)
\(\chi_{11025}(6116,\cdot)\)
\(\chi_{11025}(6431,\cdot)\)
\(\chi_{11025}(6716,\cdot)\)
...
sage:chi.galois_orbit()
pari:order = charorder(g,chi)
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
\((1226,4852,9901)\) → \((e\left(\frac{1}{6}\right),e\left(\frac{2}{5}\right),e\left(\frac{19}{42}\right))\)
| \(a\) |
\(-1\) | \(1\) | \(2\) | \(4\) | \(8\) | \(11\) | \(13\) | \(16\) | \(17\) | \(19\) | \(22\) | \(23\) |
| \( \chi_{ 11025 }(10181, a) \) |
\(1\) | \(1\) | \(e\left(\frac{23}{70}\right)\) | \(e\left(\frac{23}{35}\right)\) | \(e\left(\frac{69}{70}\right)\) | \(e\left(\frac{139}{210}\right)\) | \(e\left(\frac{181}{210}\right)\) | \(e\left(\frac{11}{35}\right)\) | \(e\left(\frac{1}{105}\right)\) | \(e\left(\frac{1}{30}\right)\) | \(e\left(\frac{104}{105}\right)\) | \(e\left(\frac{89}{210}\right)\) |
sage:chi.jacobi_sum(n)