Properties

Label 11025.10181
Modulus $11025$
Conductor $11025$
Order $210$
Real no
Primitive yes
Minimal yes
Parity even

Related objects

Downloads

Learn more

Show commands: Pari/GP / SageMath
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(11025, base_ring=CyclotomicField(210)) M = H._module chi = DirichletCharacter(H, M([35,84,95]))
 
Copy content pari:[g,chi] = znchar(Mod(10181,11025))
 

Basic properties

Modulus: \(11025\)
Conductor: \(11025\)
Copy content sage:chi.conductor()
 
Copy content pari:znconreyconductor(g,chi)
 
Order: \(210\)
Copy content sage:chi.multiplicative_order()
 
Copy content pari:charorder(g,chi)
 
Real: no
Primitive: yes
Copy content sage:chi.is_primitive()
 
Copy content pari:#znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: even
Copy content sage:chi.is_odd()
 
Copy content pari:zncharisodd(g,chi)
 

Galois orbit 11025.hr

\(\chi_{11025}(131,\cdot)\) \(\chi_{11025}(416,\cdot)\) \(\chi_{11025}(446,\cdot)\) \(\chi_{11025}(731,\cdot)\) \(\chi_{11025}(761,\cdot)\) \(\chi_{11025}(1046,\cdot)\) \(\chi_{11025}(1361,\cdot)\) \(\chi_{11025}(1706,\cdot)\) \(\chi_{11025}(2021,\cdot)\) \(\chi_{11025}(2306,\cdot)\) \(\chi_{11025}(2336,\cdot)\) \(\chi_{11025}(2621,\cdot)\) \(\chi_{11025}(2936,\cdot)\) \(\chi_{11025}(2966,\cdot)\) \(\chi_{11025}(3281,\cdot)\) \(\chi_{11025}(3566,\cdot)\) \(\chi_{11025}(3881,\cdot)\) \(\chi_{11025}(3911,\cdot)\) \(\chi_{11025}(4511,\cdot)\) \(\chi_{11025}(4541,\cdot)\) \(\chi_{11025}(4856,\cdot)\) \(\chi_{11025}(5141,\cdot)\) \(\chi_{11025}(5171,\cdot)\) \(\chi_{11025}(5456,\cdot)\) \(\chi_{11025}(5486,\cdot)\) \(\chi_{11025}(5771,\cdot)\) \(\chi_{11025}(6086,\cdot)\) \(\chi_{11025}(6116,\cdot)\) \(\chi_{11025}(6431,\cdot)\) \(\chi_{11025}(6716,\cdot)\) ...

Copy content sage:chi.galois_orbit()
 
Copy content pari:order = charorder(g,chi) [ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: $\Q(\zeta_{105})$
Fixed field: Number field defined by a degree 210 polynomial (not computed)

Values on generators

\((1226,4852,9901)\) → \((e\left(\frac{1}{6}\right),e\left(\frac{2}{5}\right),e\left(\frac{19}{42}\right))\)

First values

\(a\) \(-1\)\(1\)\(2\)\(4\)\(8\)\(11\)\(13\)\(16\)\(17\)\(19\)\(22\)\(23\)
\( \chi_{ 11025 }(10181, a) \) \(1\)\(1\)\(e\left(\frac{23}{70}\right)\)\(e\left(\frac{23}{35}\right)\)\(e\left(\frac{69}{70}\right)\)\(e\left(\frac{139}{210}\right)\)\(e\left(\frac{181}{210}\right)\)\(e\left(\frac{11}{35}\right)\)\(e\left(\frac{1}{105}\right)\)\(e\left(\frac{1}{30}\right)\)\(e\left(\frac{104}{105}\right)\)\(e\left(\frac{89}{210}\right)\)
Copy content sage:chi.jacobi_sum(n)
 
\( \chi_{ 11025 }(10181,a) \;\) at \(\;a = \) e.g. 2