sage:from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(11025, base_ring=CyclotomicField(420))
M = H._module
chi = DirichletCharacter(H, M([140,231,30]))
pari:[g,chi] = znchar(Mod(7573,11025))
Modulus: | \(11025\) | |
Conductor: | \(11025\) |
sage:chi.conductor()
pari:znconreyconductor(g,chi)
|
Order: | \(420\) |
sage:chi.multiplicative_order()
pari:charorder(g,chi)
|
Real: | no |
Primitive: | yes |
sage:chi.is_primitive()
pari:#znconreyconductor(g,chi)==1
|
Minimal: | yes |
Parity: | even |
sage:chi.is_odd()
pari:zncharisodd(g,chi)
|
\(\chi_{11025}(13,\cdot)\)
\(\chi_{11025}(202,\cdot)\)
\(\chi_{11025}(223,\cdot)\)
\(\chi_{11025}(328,\cdot)\)
\(\chi_{11025}(412,\cdot)\)
\(\chi_{11025}(517,\cdot)\)
\(\chi_{11025}(727,\cdot)\)
\(\chi_{11025}(853,\cdot)\)
\(\chi_{11025}(958,\cdot)\)
\(\chi_{11025}(1042,\cdot)\)
\(\chi_{11025}(1147,\cdot)\)
\(\chi_{11025}(1462,\cdot)\)
\(\chi_{11025}(1483,\cdot)\)
\(\chi_{11025}(1588,\cdot)\)
\(\chi_{11025}(1672,\cdot)\)
\(\chi_{11025}(1777,\cdot)\)
\(\chi_{11025}(1798,\cdot)\)
\(\chi_{11025}(1903,\cdot)\)
\(\chi_{11025}(1987,\cdot)\)
\(\chi_{11025}(2092,\cdot)\)
\(\chi_{11025}(2113,\cdot)\)
\(\chi_{11025}(2428,\cdot)\)
\(\chi_{11025}(2533,\cdot)\)
\(\chi_{11025}(2617,\cdot)\)
\(\chi_{11025}(2722,\cdot)\)
\(\chi_{11025}(2848,\cdot)\)
\(\chi_{11025}(3058,\cdot)\)
\(\chi_{11025}(3163,\cdot)\)
\(\chi_{11025}(3247,\cdot)\)
\(\chi_{11025}(3352,\cdot)\)
...
sage:chi.galois_orbit()
pari:order = charorder(g,chi)
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
\((1226,4852,9901)\) → \((e\left(\frac{1}{3}\right),e\left(\frac{11}{20}\right),e\left(\frac{1}{14}\right))\)
\(a\) |
\(-1\) | \(1\) | \(2\) | \(4\) | \(8\) | \(11\) | \(13\) | \(16\) | \(17\) | \(19\) | \(22\) | \(23\) |
\( \chi_{ 11025 }(7573, a) \) |
\(1\) | \(1\) | \(e\left(\frac{311}{420}\right)\) | \(e\left(\frac{101}{210}\right)\) | \(e\left(\frac{31}{140}\right)\) | \(e\left(\frac{104}{105}\right)\) | \(e\left(\frac{199}{420}\right)\) | \(e\left(\frac{101}{105}\right)\) | \(e\left(\frac{131}{140}\right)\) | \(e\left(\frac{2}{5}\right)\) | \(e\left(\frac{307}{420}\right)\) | \(e\left(\frac{181}{420}\right)\) |
sage:chi.jacobi_sum(n)