sage:from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(1081, base_ring=CyclotomicField(506))
M = H._module
chi = DirichletCharacter(H, M([184,99]))
pari:[g,chi] = znchar(Mod(1074,1081))
| Modulus: | \(1081\) | |
| Conductor: | \(1081\) |
sage:chi.conductor()
pari:znconreyconductor(g,chi)
|
| Order: | \(506\) |
sage:chi.multiplicative_order()
pari:charorder(g,chi)
|
| Real: | no |
| Primitive: | yes |
sage:chi.is_primitive()
pari:#znconreyconductor(g,chi)==1
|
| Minimal: | yes |
| Parity: | odd |
sage:chi.is_odd()
pari:zncharisodd(g,chi)
|
\(\chi_{1081}(13,\cdot)\)
\(\chi_{1081}(26,\cdot)\)
\(\chi_{1081}(29,\cdot)\)
\(\chi_{1081}(31,\cdot)\)
\(\chi_{1081}(35,\cdot)\)
\(\chi_{1081}(39,\cdot)\)
\(\chi_{1081}(41,\cdot)\)
\(\chi_{1081}(52,\cdot)\)
\(\chi_{1081}(58,\cdot)\)
\(\chi_{1081}(62,\cdot)\)
\(\chi_{1081}(73,\cdot)\)
\(\chi_{1081}(77,\cdot)\)
\(\chi_{1081}(78,\cdot)\)
\(\chi_{1081}(82,\cdot)\)
\(\chi_{1081}(85,\cdot)\)
\(\chi_{1081}(87,\cdot)\)
\(\chi_{1081}(104,\cdot)\)
\(\chi_{1081}(105,\cdot)\)
\(\chi_{1081}(117,\cdot)\)
\(\chi_{1081}(123,\cdot)\)
\(\chi_{1081}(124,\cdot)\)
\(\chi_{1081}(127,\cdot)\)
\(\chi_{1081}(133,\cdot)\)
\(\chi_{1081}(146,\cdot)\)
\(\chi_{1081}(151,\cdot)\)
\(\chi_{1081}(154,\cdot)\)
\(\chi_{1081}(156,\cdot)\)
\(\chi_{1081}(163,\cdot)\)
\(\chi_{1081}(164,\cdot)\)
\(\chi_{1081}(167,\cdot)\)
...
sage:chi.galois_orbit()
pari:order = charorder(g,chi)
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
\((189,898)\) → \((e\left(\frac{4}{11}\right),e\left(\frac{9}{46}\right))\)
| \(a\) |
\(-1\) | \(1\) | \(2\) | \(3\) | \(4\) | \(5\) | \(6\) | \(7\) | \(8\) | \(9\) | \(10\) | \(11\) |
| \( \chi_{ 1081 }(1074, a) \) |
\(-1\) | \(1\) | \(e\left(\frac{63}{253}\right)\) | \(e\left(\frac{185}{253}\right)\) | \(e\left(\frac{126}{253}\right)\) | \(e\left(\frac{283}{506}\right)\) | \(e\left(\frac{248}{253}\right)\) | \(e\left(\frac{43}{253}\right)\) | \(e\left(\frac{189}{253}\right)\) | \(e\left(\frac{117}{253}\right)\) | \(e\left(\frac{409}{506}\right)\) | \(e\left(\frac{325}{506}\right)\) |
sage:chi.jacobi_sum(n)