Properties

Modulus $1060$
Structure \(C_{2}\times C_{4}\times C_{52}\)
Order $416$

Learn more

Show commands: Pari/GP / SageMath

Copy content sage:H = DirichletGroup(1060)
 
Copy content pari:g = idealstar(,1060,2)
 

Character group

Copy content sage:G.order()
 
Copy content pari:g.no
 
Order = 416
Copy content sage:H.invariants()
 
Copy content pari:g.cyc
 
Structure = \(C_{2}\times C_{4}\times C_{52}\)
Copy content sage:H.gens()
 
Copy content pari:g.gen
 
Generators = $\chi_{1060}(531,\cdot)$, $\chi_{1060}(637,\cdot)$, $\chi_{1060}(161,\cdot)$

First 32 of 416 characters

Each row describes a character. When available, the columns show the orbit label, order of the character, whether the character is primitive, and several values of the character.

Character Orbit Order Primitive \(-1\) \(1\) \(3\) \(7\) \(9\) \(11\) \(13\) \(17\) \(19\) \(21\) \(23\) \(27\)
\(\chi_{1060}(1,\cdot)\) 1060.a 1 no \(1\) \(1\) \(1\) \(1\) \(1\) \(1\) \(1\) \(1\) \(1\) \(1\) \(1\) \(1\)
\(\chi_{1060}(3,\cdot)\) 1060.bc 52 yes \(-1\) \(1\) \(e\left(\frac{4}{13}\right)\) \(e\left(\frac{43}{52}\right)\) \(e\left(\frac{8}{13}\right)\) \(e\left(\frac{6}{13}\right)\) \(e\left(\frac{5}{52}\right)\) \(e\left(\frac{1}{52}\right)\) \(e\left(\frac{5}{52}\right)\) \(e\left(\frac{7}{52}\right)\) \(-1\) \(e\left(\frac{12}{13}\right)\)
\(\chi_{1060}(7,\cdot)\) 1060.bj 52 yes \(1\) \(1\) \(e\left(\frac{43}{52}\right)\) \(e\left(\frac{27}{52}\right)\) \(e\left(\frac{17}{26}\right)\) \(e\left(\frac{3}{26}\right)\) \(e\left(\frac{11}{52}\right)\) \(e\left(\frac{49}{52}\right)\) \(e\left(\frac{25}{26}\right)\) \(e\left(\frac{9}{26}\right)\) \(-i\) \(e\left(\frac{25}{52}\right)\)
\(\chi_{1060}(9,\cdot)\) 1060.w 26 no \(1\) \(1\) \(e\left(\frac{8}{13}\right)\) \(e\left(\frac{17}{26}\right)\) \(e\left(\frac{3}{13}\right)\) \(e\left(\frac{12}{13}\right)\) \(e\left(\frac{5}{26}\right)\) \(e\left(\frac{1}{26}\right)\) \(e\left(\frac{5}{26}\right)\) \(e\left(\frac{7}{26}\right)\) \(1\) \(e\left(\frac{11}{13}\right)\)
\(\chi_{1060}(11,\cdot)\) 1060.x 26 no \(-1\) \(1\) \(e\left(\frac{6}{13}\right)\) \(e\left(\frac{3}{26}\right)\) \(e\left(\frac{12}{13}\right)\) \(e\left(\frac{5}{26}\right)\) \(e\left(\frac{10}{13}\right)\) \(e\left(\frac{2}{13}\right)\) \(e\left(\frac{10}{13}\right)\) \(e\left(\frac{15}{26}\right)\) \(1\) \(e\left(\frac{5}{13}\right)\)
\(\chi_{1060}(13,\cdot)\) 1060.bh 52 no \(-1\) \(1\) \(e\left(\frac{5}{52}\right)\) \(e\left(\frac{11}{52}\right)\) \(e\left(\frac{5}{26}\right)\) \(e\left(\frac{10}{13}\right)\) \(e\left(\frac{17}{52}\right)\) \(e\left(\frac{19}{52}\right)\) \(e\left(\frac{15}{26}\right)\) \(e\left(\frac{4}{13}\right)\) \(i\) \(e\left(\frac{15}{52}\right)\)
\(\chi_{1060}(17,\cdot)\) 1060.bg 52 no \(-1\) \(1\) \(e\left(\frac{1}{52}\right)\) \(e\left(\frac{49}{52}\right)\) \(e\left(\frac{1}{26}\right)\) \(e\left(\frac{2}{13}\right)\) \(e\left(\frac{19}{52}\right)\) \(e\left(\frac{9}{52}\right)\) \(e\left(\frac{8}{13}\right)\) \(e\left(\frac{25}{26}\right)\) \(i\) \(e\left(\frac{3}{52}\right)\)
\(\chi_{1060}(19,\cdot)\) 1060.bk 52 yes \(1\) \(1\) \(e\left(\frac{5}{52}\right)\) \(e\left(\frac{25}{26}\right)\) \(e\left(\frac{5}{26}\right)\) \(e\left(\frac{10}{13}\right)\) \(e\left(\frac{15}{26}\right)\) \(e\left(\frac{8}{13}\right)\) \(e\left(\frac{43}{52}\right)\) \(e\left(\frac{3}{52}\right)\) \(-i\) \(e\left(\frac{15}{52}\right)\)
\(\chi_{1060}(21,\cdot)\) 1060.bl 52 no \(-1\) \(1\) \(e\left(\frac{7}{52}\right)\) \(e\left(\frac{9}{26}\right)\) \(e\left(\frac{7}{26}\right)\) \(e\left(\frac{15}{26}\right)\) \(e\left(\frac{4}{13}\right)\) \(e\left(\frac{25}{26}\right)\) \(e\left(\frac{3}{52}\right)\) \(e\left(\frac{25}{52}\right)\) \(i\) \(e\left(\frac{21}{52}\right)\)
\(\chi_{1060}(23,\cdot)\) 1060.j 4 yes \(-1\) \(1\) \(-1\) \(-i\) \(1\) \(1\) \(i\) \(i\) \(-i\) \(i\) \(1\) \(-1\)
\(\chi_{1060}(27,\cdot)\) 1060.bc 52 yes \(-1\) \(1\) \(e\left(\frac{12}{13}\right)\) \(e\left(\frac{25}{52}\right)\) \(e\left(\frac{11}{13}\right)\) \(e\left(\frac{5}{13}\right)\) \(e\left(\frac{15}{52}\right)\) \(e\left(\frac{3}{52}\right)\) \(e\left(\frac{15}{52}\right)\) \(e\left(\frac{21}{52}\right)\) \(-1\) \(e\left(\frac{10}{13}\right)\)
\(\chi_{1060}(29,\cdot)\) 1060.w 26 no \(1\) \(1\) \(e\left(\frac{7}{13}\right)\) \(e\left(\frac{23}{26}\right)\) \(e\left(\frac{1}{13}\right)\) \(e\left(\frac{4}{13}\right)\) \(e\left(\frac{19}{26}\right)\) \(e\left(\frac{9}{26}\right)\) \(e\left(\frac{19}{26}\right)\) \(e\left(\frac{11}{26}\right)\) \(1\) \(e\left(\frac{8}{13}\right)\)
\(\chi_{1060}(31,\cdot)\) 1060.be 52 no \(1\) \(1\) \(e\left(\frac{15}{52}\right)\) \(e\left(\frac{5}{13}\right)\) \(e\left(\frac{15}{26}\right)\) \(e\left(\frac{4}{13}\right)\) \(e\left(\frac{3}{13}\right)\) \(e\left(\frac{9}{26}\right)\) \(e\left(\frac{51}{52}\right)\) \(e\left(\frac{35}{52}\right)\) \(i\) \(e\left(\frac{45}{52}\right)\)
\(\chi_{1060}(33,\cdot)\) 1060.bd 52 no \(1\) \(1\) \(e\left(\frac{10}{13}\right)\) \(e\left(\frac{49}{52}\right)\) \(e\left(\frac{7}{13}\right)\) \(e\left(\frac{17}{26}\right)\) \(e\left(\frac{45}{52}\right)\) \(e\left(\frac{9}{52}\right)\) \(e\left(\frac{45}{52}\right)\) \(e\left(\frac{37}{52}\right)\) \(-1\) \(e\left(\frac{4}{13}\right)\)
\(\chi_{1060}(37,\cdot)\) 1060.bg 52 no \(-1\) \(1\) \(e\left(\frac{29}{52}\right)\) \(e\left(\frac{17}{52}\right)\) \(e\left(\frac{3}{26}\right)\) \(e\left(\frac{6}{13}\right)\) \(e\left(\frac{31}{52}\right)\) \(e\left(\frac{1}{52}\right)\) \(e\left(\frac{11}{13}\right)\) \(e\left(\frac{23}{26}\right)\) \(i\) \(e\left(\frac{35}{52}\right)\)
\(\chi_{1060}(39,\cdot)\) 1060.bk 52 yes \(1\) \(1\) \(e\left(\frac{21}{52}\right)\) \(e\left(\frac{1}{26}\right)\) \(e\left(\frac{21}{26}\right)\) \(e\left(\frac{3}{13}\right)\) \(e\left(\frac{11}{26}\right)\) \(e\left(\frac{5}{13}\right)\) \(e\left(\frac{35}{52}\right)\) \(e\left(\frac{23}{52}\right)\) \(-i\) \(e\left(\frac{11}{52}\right)\)
\(\chi_{1060}(41,\cdot)\) 1060.bl 52 no \(-1\) \(1\) \(e\left(\frac{37}{52}\right)\) \(e\left(\frac{3}{26}\right)\) \(e\left(\frac{11}{26}\right)\) \(e\left(\frac{5}{26}\right)\) \(e\left(\frac{10}{13}\right)\) \(e\left(\frac{17}{26}\right)\) \(e\left(\frac{1}{52}\right)\) \(e\left(\frac{43}{52}\right)\) \(-i\) \(e\left(\frac{7}{52}\right)\)
\(\chi_{1060}(43,\cdot)\) 1060.bj 52 yes \(1\) \(1\) \(e\left(\frac{49}{52}\right)\) \(e\left(\frac{9}{52}\right)\) \(e\left(\frac{23}{26}\right)\) \(e\left(\frac{1}{26}\right)\) \(e\left(\frac{21}{52}\right)\) \(e\left(\frac{51}{52}\right)\) \(e\left(\frac{17}{26}\right)\) \(e\left(\frac{3}{26}\right)\) \(i\) \(e\left(\frac{43}{52}\right)\)
\(\chi_{1060}(47,\cdot)\) 1060.bi 52 yes \(1\) \(1\) \(e\left(\frac{33}{52}\right)\) \(e\left(\frac{31}{52}\right)\) \(e\left(\frac{7}{26}\right)\) \(e\left(\frac{15}{26}\right)\) \(e\left(\frac{3}{52}\right)\) \(e\left(\frac{37}{52}\right)\) \(e\left(\frac{4}{13}\right)\) \(e\left(\frac{3}{13}\right)\) \(i\) \(e\left(\frac{47}{52}\right)\)
\(\chi_{1060}(49,\cdot)\) 1060.ba 26 no \(1\) \(1\) \(e\left(\frac{17}{26}\right)\) \(e\left(\frac{1}{26}\right)\) \(e\left(\frac{4}{13}\right)\) \(e\left(\frac{3}{13}\right)\) \(e\left(\frac{11}{26}\right)\) \(e\left(\frac{23}{26}\right)\) \(e\left(\frac{12}{13}\right)\) \(e\left(\frac{9}{13}\right)\) \(-1\) \(e\left(\frac{25}{26}\right)\)
\(\chi_{1060}(51,\cdot)\) 1060.be 52 no \(1\) \(1\) \(e\left(\frac{17}{52}\right)\) \(e\left(\frac{10}{13}\right)\) \(e\left(\frac{17}{26}\right)\) \(e\left(\frac{8}{13}\right)\) \(e\left(\frac{6}{13}\right)\) \(e\left(\frac{5}{26}\right)\) \(e\left(\frac{37}{52}\right)\) \(e\left(\frac{5}{52}\right)\) \(-i\) \(e\left(\frac{51}{52}\right)\)
\(\chi_{1060}(57,\cdot)\) 1060.bg 52 no \(-1\) \(1\) \(e\left(\frac{21}{52}\right)\) \(e\left(\frac{41}{52}\right)\) \(e\left(\frac{21}{26}\right)\) \(e\left(\frac{3}{13}\right)\) \(e\left(\frac{35}{52}\right)\) \(e\left(\frac{33}{52}\right)\) \(e\left(\frac{12}{13}\right)\) \(e\left(\frac{5}{26}\right)\) \(i\) \(e\left(\frac{11}{52}\right)\)
\(\chi_{1060}(59,\cdot)\) 1060.z 26 yes \(-1\) \(1\) \(e\left(\frac{23}{26}\right)\) \(e\left(\frac{11}{13}\right)\) \(e\left(\frac{10}{13}\right)\) \(e\left(\frac{15}{26}\right)\) \(e\left(\frac{21}{26}\right)\) \(e\left(\frac{25}{26}\right)\) \(e\left(\frac{4}{13}\right)\) \(e\left(\frac{19}{26}\right)\) \(-1\) \(e\left(\frac{17}{26}\right)\)
\(\chi_{1060}(61,\cdot)\) 1060.bl 52 no \(-1\) \(1\) \(e\left(\frac{51}{52}\right)\) \(e\left(\frac{21}{26}\right)\) \(e\left(\frac{25}{26}\right)\) \(e\left(\frac{9}{26}\right)\) \(e\left(\frac{5}{13}\right)\) \(e\left(\frac{15}{26}\right)\) \(e\left(\frac{7}{52}\right)\) \(e\left(\frac{41}{52}\right)\) \(i\) \(e\left(\frac{49}{52}\right)\)
\(\chi_{1060}(63,\cdot)\) 1060.bi 52 yes \(1\) \(1\) \(e\left(\frac{23}{52}\right)\) \(e\left(\frac{9}{52}\right)\) \(e\left(\frac{23}{26}\right)\) \(e\left(\frac{1}{26}\right)\) \(e\left(\frac{21}{52}\right)\) \(e\left(\frac{51}{52}\right)\) \(e\left(\frac{2}{13}\right)\) \(e\left(\frac{8}{13}\right)\) \(-i\) \(e\left(\frac{17}{52}\right)\)
\(\chi_{1060}(67,\cdot)\) 1060.bc 52 yes \(-1\) \(1\) \(e\left(\frac{2}{13}\right)\) \(e\left(\frac{41}{52}\right)\) \(e\left(\frac{4}{13}\right)\) \(e\left(\frac{3}{13}\right)\) \(e\left(\frac{35}{52}\right)\) \(e\left(\frac{7}{52}\right)\) \(e\left(\frac{35}{52}\right)\) \(e\left(\frac{49}{52}\right)\) \(-1\) \(e\left(\frac{6}{13}\right)\)
\(\chi_{1060}(69,\cdot)\) 1060.ba 26 no \(1\) \(1\) \(e\left(\frac{21}{26}\right)\) \(e\left(\frac{15}{26}\right)\) \(e\left(\frac{8}{13}\right)\) \(e\left(\frac{6}{13}\right)\) \(e\left(\frac{9}{26}\right)\) \(e\left(\frac{7}{26}\right)\) \(e\left(\frac{11}{13}\right)\) \(e\left(\frac{5}{13}\right)\) \(-1\) \(e\left(\frac{11}{26}\right)\)
\(\chi_{1060}(71,\cdot)\) 1060.be 52 no \(1\) \(1\) \(e\left(\frac{49}{52}\right)\) \(e\left(\frac{12}{13}\right)\) \(e\left(\frac{23}{26}\right)\) \(e\left(\frac{7}{13}\right)\) \(e\left(\frac{2}{13}\right)\) \(e\left(\frac{19}{26}\right)\) \(e\left(\frac{21}{52}\right)\) \(e\left(\frac{45}{52}\right)\) \(-i\) \(e\left(\frac{43}{52}\right)\)
\(\chi_{1060}(73,\cdot)\) 1060.bn 52 no \(1\) \(1\) \(e\left(\frac{7}{26}\right)\) \(e\left(\frac{49}{52}\right)\) \(e\left(\frac{7}{13}\right)\) \(e\left(\frac{17}{26}\right)\) \(e\left(\frac{45}{52}\right)\) \(e\left(\frac{9}{52}\right)\) \(e\left(\frac{19}{52}\right)\) \(e\left(\frac{11}{52}\right)\) \(1\) \(e\left(\frac{21}{26}\right)\)
\(\chi_{1060}(77,\cdot)\) 1060.bh 52 no \(-1\) \(1\) \(e\left(\frac{15}{52}\right)\) \(e\left(\frac{33}{52}\right)\) \(e\left(\frac{15}{26}\right)\) \(e\left(\frac{4}{13}\right)\) \(e\left(\frac{51}{52}\right)\) \(e\left(\frac{5}{52}\right)\) \(e\left(\frac{19}{26}\right)\) \(e\left(\frac{12}{13}\right)\) \(-i\) \(e\left(\frac{45}{52}\right)\)
\(\chi_{1060}(79,\cdot)\) 1060.bk 52 yes \(1\) \(1\) \(e\left(\frac{9}{52}\right)\) \(e\left(\frac{19}{26}\right)\) \(e\left(\frac{9}{26}\right)\) \(e\left(\frac{5}{13}\right)\) \(e\left(\frac{1}{26}\right)\) \(e\left(\frac{4}{13}\right)\) \(e\left(\frac{15}{52}\right)\) \(e\left(\frac{47}{52}\right)\) \(-i\) \(e\left(\frac{27}{52}\right)\)
\(\chi_{1060}(81,\cdot)\) 1060.u 13 no \(1\) \(1\) \(e\left(\frac{3}{13}\right)\) \(e\left(\frac{4}{13}\right)\) \(e\left(\frac{6}{13}\right)\) \(e\left(\frac{11}{13}\right)\) \(e\left(\frac{5}{13}\right)\) \(e\left(\frac{1}{13}\right)\) \(e\left(\frac{5}{13}\right)\) \(e\left(\frac{7}{13}\right)\) \(1\) \(e\left(\frac{9}{13}\right)\)
Click here to search among the remaining 384 characters.