Properties

Label 1020.383
Modulus $1020$
Conductor $1020$
Order $8$
Real no
Primitive yes
Minimal yes
Parity odd

Related objects

Downloads

Learn more

Show commands: Pari/GP / SageMath
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(1020, base_ring=CyclotomicField(8)) M = H._module chi = DirichletCharacter(H, M([4,4,6,1]))
 
Copy content pari:[g,chi] = znchar(Mod(383,1020))
 

Basic properties

Modulus: \(1020\)
Conductor: \(1020\)
Copy content sage:chi.conductor()
 
Copy content pari:znconreyconductor(g,chi)
 
Order: \(8\)
Copy content sage:chi.multiplicative_order()
 
Copy content pari:charorder(g,chi)
 
Real: no
Primitive: yes
Copy content sage:chi.is_primitive()
 
Copy content pari:#znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: odd
Copy content sage:chi.is_odd()
 
Copy content pari:zncharisodd(g,chi)
 

Galois orbit 1020.bx

\(\chi_{1020}(263,\cdot)\) \(\chi_{1020}(287,\cdot)\) \(\chi_{1020}(383,\cdot)\) \(\chi_{1020}(767,\cdot)\)

Copy content sage:chi.galois_orbit()
 
Copy content pari:order = charorder(g,chi) [ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: \(\Q(\zeta_{8})\)
Fixed field: 8.0.132949730052000000.1

Values on generators

\((511,341,817,241)\) → \((-1,-1,-i,e\left(\frac{1}{8}\right))\)

First values

\(a\) \(-1\)\(1\)\(7\)\(11\)\(13\)\(19\)\(23\)\(29\)\(31\)\(37\)\(41\)\(43\)
\( \chi_{ 1020 }(383, a) \) \(-1\)\(1\)\(e\left(\frac{5}{8}\right)\)\(e\left(\frac{7}{8}\right)\)\(-i\)\(-i\)\(e\left(\frac{1}{8}\right)\)\(e\left(\frac{5}{8}\right)\)\(e\left(\frac{5}{8}\right)\)\(e\left(\frac{7}{8}\right)\)\(e\left(\frac{7}{8}\right)\)\(1\)
Copy content sage:chi.jacobi_sum(n)
 
\( \chi_{ 1020 }(383,a) \;\) at \(\;a = \) e.g. 2