sage:from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(1001, base_ring=CyclotomicField(60))
M = H._module
chi = DirichletCharacter(H, M([30,48,5]))
pari:[g,chi] = znchar(Mod(223,1001))
Modulus: | \(1001\) | |
Conductor: | \(1001\) |
sage:chi.conductor()
pari:znconreyconductor(g,chi)
|
Order: | \(60\) |
sage:chi.multiplicative_order()
pari:charorder(g,chi)
|
Real: | no |
Primitive: | yes |
sage:chi.is_primitive()
pari:#znconreyconductor(g,chi)==1
|
Minimal: | yes |
Parity: | even |
sage:chi.is_odd()
pari:zncharisodd(g,chi)
|
\(\chi_{1001}(20,\cdot)\)
\(\chi_{1001}(97,\cdot)\)
\(\chi_{1001}(202,\cdot)\)
\(\chi_{1001}(223,\cdot)\)
\(\chi_{1001}(258,\cdot)\)
\(\chi_{1001}(279,\cdot)\)
\(\chi_{1001}(405,\cdot)\)
\(\chi_{1001}(531,\cdot)\)
\(\chi_{1001}(566,\cdot)\)
\(\chi_{1001}(587,\cdot)\)
\(\chi_{1001}(643,\cdot)\)
\(\chi_{1001}(713,\cdot)\)
\(\chi_{1001}(839,\cdot)\)
\(\chi_{1001}(895,\cdot)\)
\(\chi_{1001}(916,\cdot)\)
\(\chi_{1001}(951,\cdot)\)
sage:chi.galois_orbit()
pari:order = charorder(g,chi)
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
\((430,365,925)\) → \((-1,e\left(\frac{4}{5}\right),e\left(\frac{1}{12}\right))\)
\(a\) |
\(-1\) | \(1\) | \(2\) | \(3\) | \(4\) | \(5\) | \(6\) | \(8\) | \(9\) | \(10\) | \(12\) | \(15\) |
\( \chi_{ 1001 }(223, a) \) |
\(1\) | \(1\) | \(e\left(\frac{53}{60}\right)\) | \(e\left(\frac{7}{30}\right)\) | \(e\left(\frac{23}{30}\right)\) | \(e\left(\frac{9}{20}\right)\) | \(e\left(\frac{7}{60}\right)\) | \(e\left(\frac{13}{20}\right)\) | \(e\left(\frac{7}{15}\right)\) | \(e\left(\frac{1}{3}\right)\) | \(1\) | \(e\left(\frac{41}{60}\right)\) |
sage:chi.jacobi_sum(n)