sage:from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(1000, base_ring=CyclotomicField(100))
M = H._module
chi = DirichletCharacter(H, M([50,50,9]))
pari:[g,chi] = znchar(Mod(387,1000))
Modulus: | \(1000\) | |
Conductor: | \(1000\) |
sage:chi.conductor()
pari:znconreyconductor(g,chi)
|
Order: | \(100\) |
sage:chi.multiplicative_order()
pari:charorder(g,chi)
|
Real: | no |
Primitive: | yes |
sage:chi.is_primitive()
pari:#znconreyconductor(g,chi)==1
|
Minimal: | yes |
Parity: | even |
sage:chi.is_odd()
pari:zncharisodd(g,chi)
|
\(\chi_{1000}(3,\cdot)\)
\(\chi_{1000}(27,\cdot)\)
\(\chi_{1000}(67,\cdot)\)
\(\chi_{1000}(83,\cdot)\)
\(\chi_{1000}(123,\cdot)\)
\(\chi_{1000}(147,\cdot)\)
\(\chi_{1000}(163,\cdot)\)
\(\chi_{1000}(187,\cdot)\)
\(\chi_{1000}(203,\cdot)\)
\(\chi_{1000}(227,\cdot)\)
\(\chi_{1000}(267,\cdot)\)
\(\chi_{1000}(283,\cdot)\)
\(\chi_{1000}(323,\cdot)\)
\(\chi_{1000}(347,\cdot)\)
\(\chi_{1000}(363,\cdot)\)
\(\chi_{1000}(387,\cdot)\)
\(\chi_{1000}(403,\cdot)\)
\(\chi_{1000}(427,\cdot)\)
\(\chi_{1000}(467,\cdot)\)
\(\chi_{1000}(483,\cdot)\)
\(\chi_{1000}(523,\cdot)\)
\(\chi_{1000}(547,\cdot)\)
\(\chi_{1000}(563,\cdot)\)
\(\chi_{1000}(587,\cdot)\)
\(\chi_{1000}(603,\cdot)\)
\(\chi_{1000}(627,\cdot)\)
\(\chi_{1000}(667,\cdot)\)
\(\chi_{1000}(683,\cdot)\)
\(\chi_{1000}(723,\cdot)\)
\(\chi_{1000}(747,\cdot)\)
...
sage:chi.galois_orbit()
pari:order = charorder(g,chi)
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
\((751,501,377)\) → \((-1,-1,e\left(\frac{9}{100}\right))\)
\(a\) |
\(-1\) | \(1\) | \(3\) | \(7\) | \(9\) | \(11\) | \(13\) | \(17\) | \(19\) | \(21\) | \(23\) | \(27\) |
\( \chi_{ 1000 }(387, a) \) |
\(1\) | \(1\) | \(e\left(\frac{63}{100}\right)\) | \(e\left(\frac{3}{20}\right)\) | \(e\left(\frac{13}{50}\right)\) | \(e\left(\frac{21}{25}\right)\) | \(e\left(\frac{1}{100}\right)\) | \(e\left(\frac{57}{100}\right)\) | \(e\left(\frac{31}{50}\right)\) | \(e\left(\frac{39}{50}\right)\) | \(e\left(\frac{29}{100}\right)\) | \(e\left(\frac{89}{100}\right)\) |
sage:chi.jacobi_sum(n)