Properties

Label 7T6-7_2.2.1.1.1_5.1.1-a
Group 7T6
Orders $[7, 2, 5]$
Genus $0$
Size $2$

Related objects

Downloads

Learn more

Passport invariants

Degree:$7$
Monodromy group:$A_7$
Genus:$0$
Geometry type:hyperbolic
Primitive:yes

Conjugacy class data

The order and cycle type of an element in each of the conjugacy classes $C_0, C_1, C_{\infty}$ of the passport containing this orbit.

OrderPartition
$7$ $7$
$2$ $2, 2, 1, 1, 1$
$5$ $5, 1, 1$

Base field

\(\Q(\sqrt{21}) \) ; Generator \(\nu\), with minimal polynomial \( T^{2} - T - 5 \).

Curve

$\mathbb{P}^1$, with affine coordinate $x$
$\displaystyle x^{7} t + \left(\nu + 2\right) \left(\left(-3 \nu + 15\right) x^{2} + \left(3 \nu - 5\right) x - 4 \nu + 12\right)=0$ Copy content Toggle raw display
(smooth)
(planar)

Map

\(\displaystyle \phi(x) =\) $\displaystyle 5184 \frac{\left(-224 \nu + 619\right) x^{7}}{102 x^{7} + \left(28 \nu - 2485\right) x^{6} + \left(-672 \nu + 23940\right) x^{5} + \left(6300 \nu - 112875\right) x^{4} + \left(-28000 \nu + 253750\right) x^{3} + \left(52500 \nu - 196875\right) x^{2} - 87500 \nu - 203125}$ Copy content Toggle raw display

\(\displaystyle \phi(t,x) = \frac{2^{6} \cdot 7^{3}}{3^{5} \cdot 5^{6}}(64 \nu - 179) \, t\)

Embeddings

Each permutation triple in the orbit corresponds to an embedded Belyi map with coefficients in $\mathbb{C}$. The table below gives this correspondence.

Embedding $\nu \mapsto \nu_i \in \mathbb{C}$ Permutation triple
$2.79128784747792+0.0\sqrt{-1}$ $(1,2,7,6,5,4,3), (1,2)(3,4), (1,4,5,6,7)$
$-1.79128784747792+0.0\sqrt{-1}$ $(1,2,7,6,4,3,5), (1,2)(3,4), (1,5,4,6,7)$