Refine search
Results (28 matches)
Download displayed columns for resultsGalois conjugate representations are grouped into single lines.
Label | Dimension | Conductor | Artin stem field | $G$ | Ind | $\chi(c)$ |
---|---|---|---|---|---|---|
6.16711744.7t6.a.a | $6$ | $ 2^{6} \cdot 7^{2} \cdot 73^{2}$ | 7.3.16711744.1 | $A_7$ | $1$ | $2$ |
6.50808384.7t6.a.a | $6$ | $ 2^{6} \cdot 3^{8} \cdot 11^{2}$ | 7.3.50808384.1 | $A_7$ | $1$ | $2$ |
6.112021056.7t6.a.a | $6$ | $ 2^{6} \cdot 3^{6} \cdot 7^{4}$ | 7.3.112021056.1 | $A_7$ | $1$ | $2$ |
6.988410721.7t6.a.a | $6$ | $ 149^{2} \cdot 211^{2}$ | 7.7.988410721.1 | $A_7$ | $1$ | $6$ |
10.141...528.70.a.a 10.141...528.70.a.b | $10$ | $ 2^{9} \cdot 3^{14} \cdot 7^{8}$ | 7.3.112021056.1 | $A_7$ | $0$ | $-2$ |
10.351...448.70.a.a 10.351...448.70.a.b | $10$ | $ 2^{9} \cdot 3^{18} \cdot 11^{6}$ | 7.3.50808384.1 | $A_7$ | $0$ | $-2$ |
10.911...232.70.a.a 10.911...232.70.a.b | $10$ | $ 2^{9} \cdot 7^{6} \cdot 73^{6}$ | 7.3.16711744.1 | $A_7$ | $0$ | $-2$ |
10.965...361.70.a.a 10.965...361.70.a.b | $10$ | $ 149^{6} \cdot 211^{6}$ | 7.7.988410721.1 | $A_7$ | $0$ | $10$ |
14.219...744.15t47.a.a | $14$ | $ 2^{12} \cdot 3^{18} \cdot 7^{12}$ | 7.3.112021056.1 | $A_7$ | $1$ | $2$ |
14.219...744.21t33.a.a | $14$ | $ 2^{12} \cdot 3^{18} \cdot 7^{12}$ | 7.3.112021056.1 | $A_7$ | $1$ | $2$ |
14.247...056.21t33.a.a | $14$ | $ 2^{12} \cdot 3^{24} \cdot 11^{8}$ | 7.3.50808384.1 | $A_7$ | $1$ | $2$ |
14.388...624.21t33.a.a | $14$ | $ 2^{12} \cdot 7^{6} \cdot 73^{8}$ | 7.3.16711744.1 | $A_7$ | $1$ | $2$ |
14.207...296.15t47.a.a | $14$ | $ 2^{12} \cdot 7^{6} \cdot 73^{10}$ | 7.3.16711744.1 | $A_7$ | $1$ | $2$ |
14.243...856.15t47.a.a | $14$ | $ 2^{12} \cdot 3^{28} \cdot 11^{10}$ | 7.3.50808384.1 | $A_7$ | $1$ | $2$ |
14.954...281.21t33.a.a | $14$ | $ 149^{8} \cdot 211^{8}$ | 7.7.988410721.1 | $A_7$ | $1$ | $14$ |
14.943...601.15t47.a.a | $14$ | $ 149^{10} \cdot 211^{10}$ | 7.7.988410721.1 | $A_7$ | $1$ | $14$ |
15.197...696.42t294.a.a | $15$ | $ 2^{12} \cdot 3^{20} \cdot 7^{12}$ | 7.3.112021056.1 | $A_7$ | $1$ | $-1$ |
15.223...504.42t294.a.a | $15$ | $ 2^{12} \cdot 3^{26} \cdot 11^{8}$ | 7.3.50808384.1 | $A_7$ | $1$ | $-1$ |
15.190...576.42t294.a.a | $15$ | $ 2^{12} \cdot 7^{8} \cdot 73^{8}$ | 7.3.16711744.1 | $A_7$ | $1$ | $-1$ |
15.954...281.42t294.a.a | $15$ | $ 149^{8} \cdot 211^{8}$ | 7.7.988410721.1 | $A_7$ | $1$ | $15$ |
21.179...056.42t299.a.a | $21$ | $ 2^{18} \cdot 3^{30} \cdot 7^{16}$ | 7.3.112021056.1 | $A_7$ | $1$ | $1$ |
21.118...104.42t299.a.a | $21$ | $ 2^{18} \cdot 3^{44} \cdot 11^{16}$ | 7.3.50808384.1 | $A_7$ | $1$ | $1$ |
21.481...216.42t299.a.a | $21$ | $ 2^{18} \cdot 7^{10} \cdot 73^{16}$ | 7.3.16711744.1 | $A_7$ | $1$ | $1$ |
21.910...961.42t299.a.a | $21$ | $ 149^{16} \cdot 211^{16}$ | 7.7.988410721.1 | $A_7$ | $1$ | $21$ |
35.354...976.70.a.a | $35$ | $ 2^{30} \cdot 3^{50} \cdot 7^{28}$ | 7.3.112021056.1 | $A_7$ | $1$ | $-1$ |
35.294...824.70.a.a | $35$ | $ 2^{30} \cdot 3^{68} \cdot 11^{24}$ | 7.3.50808384.1 | $A_7$ | $1$ | $-1$ |
35.917...416.70.a.a | $35$ | $ 2^{30} \cdot 7^{18} \cdot 73^{24}$ | 7.3.16711744.1 | $A_7$ | $1$ | $-1$ |
35.869...041.70.a.a | $35$ | $ 149^{24} \cdot 211^{24}$ | 7.7.988410721.1 | $A_7$ | $1$ | $35$ |