Learn more

Refine search


Results (24 matches)

Galois conjugate representations are grouped into single lines.
Label Dimension Conductor Artin stem field $G$ Ind $\chi(c)$
45.199...000.110.a.a $45$ $ 2^{102} \cdot 3^{40} \cdot 5^{88}$ 11.3.6561000000000000000000.1 $M_{11}$ $1$ $-3$
45.782...528.336.a.a 45.782...528.336.a.b $45$ $ 2^{100} \cdot 3217^{39}$ 8.0.72641749645773438449680384.1 $A_8$ $0$ $-3$
45.480...168.336.a.a 45.480...168.336.a.b $45$ $ 2^{126} \cdot 51473^{39}$ 8.0.19501894337558159417628591379185664.1 $A_8$ $0$ $-3$
45.761...136.336.a.a 45.761...136.336.a.b $45$ $ 2^{176} \cdot 7^{56} \cdot 11^{39} \cdot 191^{39}$ 8.0.133100753213221593424899389161209856.1 $A_8$ $0$ $-3$
45.125...352.336.a.a 45.125...352.336.a.b $45$ $ 2^{136} \cdot 29^{39} \cdot 3917^{39}$ 8.0.2252730971538337484304305478905626624.1 $A_8$ $0$ $-3$
45.296...752.336.a.a 45.296...752.336.a.b $45$ $ 2^{176} \cdot 113^{39} \cdot 911^{39}$ 8.0.319463173328482073097337827900516204544.1 $A_8$ $0$ $-3$
45.297...512.336.a.a 45.297...512.336.a.b $45$ $ 2^{176} \cdot 102953^{39}$ 8.0.319649416647163494229316963315979649024.1 $A_8$ $0$ $-3$
45.701...936.336.a.a 45.701...936.336.a.b $45$ $ 2^{130} \cdot 11^{39} \cdot 74869^{39}$ 8.0.1277992348243533546275162547509832257536.1 $A_8$ $0$ $-3$
45.703...232.336.a.a 45.703...232.336.a.b $45$ $ 2^{130} \cdot 23^{39} \cdot 35809^{39}$ 8.0.5113757317969899544771546325450569302016.1 $A_8$ $0$ $-3$
45.735...592.336.a.a 45.735...592.336.a.b $45$ $ 2^{150} \cdot 823547^{39}$ 8.0.81784359890073480322911752930604437733376.1 $A_8$ $0$ $-3$
45.736...656.336.a.a 45.736...656.336.a.b $45$ $ 2^{150} \cdot 43^{39} \cdot 107^{39} \cdot 179^{39}$ 8.0.81803428774472904272307991671908472193024.1 $A_8$ $0$ $-3$
45.738...368.336.a.a 45.738...368.336.a.b $45$ $ 2^{150} \cdot 823643^{39}$ 8.0.81841577658693500678182700989203572064256.1 $A_8$ $0$ $-3$
45.135...232.336.a.a 45.135...232.336.a.b $45$ $ 2^{136} \cdot 3294173^{39}$ 8.0.1339918344154038594028110691225010840890507264.1 $A_8$ $0$ $-3$
45.135...856.336.a.a 45.135...856.336.a.b $45$ $ 2^{136} \cdot 11^{39} \cdot 299471^{39}$ 8.0.1339937868468943908837290142533567581866950656.1 $A_8$ $0$ $-3$
45.470...888.336.a.a 45.470...888.336.a.b $45$ $ 2^{130} \cdot 11^{39} \cdot 435593^{39}$ 8.0.3172352108695376607450650959096645338500694016.1 $A_8$ $0$ $-3$
45.419...888.336.a.a 45.419...888.336.a.b $45$ $ 2^{138} \cdot 7^{56} \cdot 268913^{39}$ 8.0.36574214064047828349270556528863627894423814144.1 $A_8$ $0$ $-3$
45.163...696.336.a.a 45.163...696.336.a.b $45$ $ 2^{138} \cdot 67^{39} \cdot 193^{39} \cdot 1019^{39}$ 8.0.87812768645884871208063446530730170282275531390976.1 $A_8$ $0$ $-3$
45.163...752.336.a.a 45.163...752.336.a.b $45$ $ 2^{138} \cdot 701^{39} \cdot 18797^{39}$ 8.0.87813088530439533539051393535468530591915378212864.1 $A_8$ $0$ $-3$
45.163...288.336.a.a 45.163...288.336.a.b $45$ $ 2^{138} \cdot 11^{39} \cdot 151^{39} \cdot 7933^{39}$ 8.0.87813728302462049260764173611685476867240408121344.1 $A_8$ $0$ $-3$
45.163...776.336.a.a 45.163...776.336.a.b $45$ $ 2^{138} \cdot 23^{39} \cdot 572903^{39}$ 8.0.87815967535129608031908549089667529769029306679296.1 $A_8$ $0$ $-3$
45.494...176.336.a.a 45.494...176.336.a.b $45$ $ 2^{130} \cdot 7^{56} \cdot 1075649^{39}$ 8.0.2340710530180884465731804242655471841228462751744.1 $A_8$ $0$ $-3$
45.193...584.336.a.a 45.193...584.336.a.b $45$ $ 2^{130} \cdot 52706761^{39}$ 8.0.5620020392178081715128903113480438691650659827318784.1 $A_8$ $0$ $-3$
45.193...312.336.a.a 45.193...312.336.a.b $45$ $ 2^{130} \cdot 23^{39} \cdot 43^{39} \cdot 137^{39} \cdot 389^{39}$ 8.0.5620030628480917722529796097626934820084447048892416.1 $A_8$ $0$ $-3$
45.193...128.336.a.a 45.193...128.336.a.b $45$ $ 2^{130} \cdot 29^{39} \cdot 37^{39} \cdot 49121^{39}$ 8.0.5620066455663197695561554590870531303687507769819136.1 $A_8$ $0$ $-3$