Learn more about

Refine search


Results (24 matches)

Galois conjugate representations are grouped into single lines.
Label Dimension Conductor Defining polynomial of Artin field $G$ Ind $\chi(c)$
45.199...000.110.a.a $45$ $ 2^{102} \cdot 3^{40} \cdot 5^{88}$ x11 - 2x10 - 5x9 - 50x8 + 70x7 + 232x6 + 796x5 - 1400x4 - 5075x3 - 10950x2 + 2805x + 90 $M_{11}$ $1$ $-3$
45.782...528.336.a.a 45.782...528.336.a.b $45$ $ 2^{100} \cdot 3217^{39}$ x8 - 4x7 + 3217 $A_8$ $0$ $-3$
45.480...168.336.a.a 45.480...168.336.a.b $45$ $ 2^{126} \cdot 51473^{39}$ x8 - 28x6 - 112x5 - 210x4 - 224x3 - 140x2 - 48x + 823561 $A_8$ $0$ $-3$
45.761...136.336.a.a 45.761...136.336.a.b $45$ $ 2^{176} \cdot 7^{56} \cdot 11^{39} \cdot 191^{39}$ x8 - 28x6 - 112x5 - 210x4 - 224x3 - 140x2 - 48x + 823585 $A_8$ $0$ $-3$
45.125...352.336.a.a 45.125...352.336.a.b $45$ $ 2^{136} \cdot 29^{39} \cdot 3917^{39}$ x8 - 112x6 - 896x5 - 3360x4 - 7168x3 - 8960x2 - 6144x + 210826816 $A_8$ $0$ $-3$
45.296...752.336.a.a 45.296...752.336.a.b $45$ $ 2^{176} \cdot 113^{39} \cdot 911^{39}$ x8 - 28x6 - 112x5 - 210x4 - 224x3 - 140x2 - 48x + 823537 $A_8$ $0$ $-3$
45.297...512.336.a.a 45.297...512.336.a.b $45$ $ 2^{176} \cdot 102953^{39}$ x8 - 28x6 - 112x5 - 210x4 - 224x3 - 140x2 - 48x + 823617 $A_8$ $0$ $-3$
45.701...936.336.a.a 45.701...936.336.a.b $45$ $ 2^{130} \cdot 11^{39} \cdot 74869^{39}$ x8 - 28x6 - 112x5 - 210x4 - 224x3 - 140x2 - 48x + 823552 $A_8$ $0$ $-3$
45.703...232.336.a.a 45.703...232.336.a.b $45$ $ 2^{130} \cdot 23^{39} \cdot 35809^{39}$ x8 - 28x6 - 112x5 - 210x4 - 224x3 - 140x2 - 48x + 823600 $A_8$ $0$ $-3$
45.735...592.336.a.a 45.735...592.336.a.b $45$ $ 2^{150} \cdot 823547^{39}$ x8 - 28x6 - 112x5 - 210x4 - 224x3 - 140x2 - 48x + 823540 $A_8$ $0$ $-3$
45.736...656.336.a.a 45.736...656.336.a.b $45$ $ 2^{150} \cdot 43^{39} \cdot 107^{39} \cdot 179^{39}$ x8 - 28x6 - 112x5 - 210x4 - 224x3 - 140x2 - 48x + 823572 $A_8$ $0$ $-3$
45.738...368.336.a.a 45.738...368.336.a.b $45$ $ 2^{150} \cdot 823643^{39}$ x8 - 28x6 - 112x5 - 210x4 - 224x3 - 140x2 - 48x + 823636 $A_8$ $0$ $-3$
45.135...232.336.a.a 45.135...232.336.a.b $45$ $ 2^{136} \cdot 3294173^{39}$ x8 - 112x6 - 896x5 - 3360x4 - 7168x3 - 8960x2 - 6144x + 210825280 $A_8$ $0$ $-3$
45.135...856.336.a.a 45.135...856.336.a.b $45$ $ 2^{136} \cdot 11^{39} \cdot 299471^{39}$ x8 - 112x6 - 896x5 - 3360x4 - 7168x3 - 8960x2 - 6144x + 210825792 $A_8$ $0$ $-3$
45.470...888.336.a.a 45.470...888.336.a.b $45$ $ 2^{130} \cdot 11^{39} \cdot 435593^{39}$ x8 - 112x6 - 896x5 - 3360x4 - 7168x3 - 8960x2 - 6144x + 210825220 $A_8$ $0$ $-3$
45.419...888.336.a.a 45.419...888.336.a.b $45$ $ 2^{138} \cdot 7^{56} \cdot 268913^{39}$ x8 - 112x6 - 896x5 - 3360x4 - 7168x3 - 8960x2 - 6144x + 210826000 $A_8$ $0$ $-3$
45.163...696.336.a.a 45.163...696.336.a.b $45$ $ 2^{138} \cdot 67^{39} \cdot 193^{39} \cdot 1019^{39}$ x8 - 112x6 - 896x5 - 3360x4 - 7168x3 - 8960x2 - 6144x + 210825232 $A_8$ $0$ $-3$
45.163...752.336.a.a 45.163...752.336.a.b $45$ $ 2^{138} \cdot 701^{39} \cdot 18797^{39}$ x8 - 112x6 - 896x5 - 3360x4 - 7168x3 - 8960x2 - 6144x + 210825360 $A_8$ $0$ $-3$
45.163...288.336.a.a 45.163...288.336.a.b $45$ $ 2^{138} \cdot 11^{39} \cdot 151^{39} \cdot 7933^{39}$ x8 - 112x6 - 896x5 - 3360x4 - 7168x3 - 8960x2 - 6144x + 210825616 $A_8$ $0$ $-3$
45.163...776.336.a.a 45.163...776.336.a.b $45$ $ 2^{138} \cdot 23^{39} \cdot 572903^{39}$ x8 - 112x6 - 896x5 - 3360x4 - 7168x3 - 8960x2 - 6144x + 210826512 $A_8$ $0$ $-3$
45.494...176.336.a.a 45.494...176.336.a.b $45$ $ 2^{130} \cdot 7^{56} \cdot 1075649^{39}$ x8 - 112x6 - 896x5 - 3360x4 - 7168x3 - 8960x2 - 6144x + 210825412 $A_8$ $0$ $-3$
45.193...584.336.a.a 45.193...584.336.a.b $45$ $ 2^{130} \cdot 52706761^{39}$ x8 - 112x6 - 896x5 - 3360x4 - 7168x3 - 8960x2 - 6144x + 210825252 $A_8$ $0$ $-3$
45.193...312.336.a.a 45.193...312.336.a.b $45$ $ 2^{130} \cdot 23^{39} \cdot 43^{39} \cdot 137^{39} \cdot 389^{39}$ x8 - 112x6 - 896x5 - 3360x4 - 7168x3 - 8960x2 - 6144x + 210825316 $A_8$ $0$ $-3$
45.193...128.336.a.a 45.193...128.336.a.b $45$ $ 2^{130} \cdot 29^{39} \cdot 37^{39} \cdot 49121^{39}$ x8 - 112x6 - 896x5 - 3360x4 - 7168x3 - 8960x2 - 6144x + 210825540 $A_8$ $0$ $-3$