Learn more about

Refine search


Results (1-50 of at least 1000)

Next
Galois conjugate representations are grouped into single lines.
Label Dimension Conductor Defining polynomial of Artin field $G$ Ind $\chi(c)$
1.1002109.2t1.a.a $1$ $ 1002109 $ x2 - x - 250527 $C_2$ $1$ $1$
1.1002413.2t1.a.a $1$ $ 61 \cdot 16433 $ x2 - x - 250603 $C_2$ $1$ $1$
1.1003541.2t1.a.a $1$ $ 7 \cdot 11 \cdot 13033 $ x2 - x - 250885 $C_2$ $1$ $1$
1.1007137.2t1.a.a $1$ $ 1007137 $ x2 - x - 251784 $C_2$ $1$ $1$
1.1011913.2t1.a.a $1$ $ 7 \cdot 37 \cdot 3907 $ x2 - x - 252978 $C_2$ $1$ $1$
1.1013613.2t1.a.a $1$ $ 3 \cdot 337871 $ x2 - x - 253403 $C_2$ $1$ $1$
1.1015537.2t1.a.a $1$ $ 107 \cdot 9491 $ x2 - x - 253884 $C_2$ $1$ $1$
1.1016777.2t1.a.a $1$ $ 1016777 $ x2 - x - 254194 $C_2$ $1$ $1$
1.1018217.2t1.a.a $1$ $ 1018217 $ x2 - x - 254554 $C_2$ $1$ $1$
1.1020732.2t1.a.a $1$ $ 2^{2} \cdot 3 \cdot 85061 $ x2 - 255183 $C_2$ $1$ $1$
1.1024469.2t1.a.a $1$ $ 83 \cdot 12343 $ x2 - x - 256117 $C_2$ $1$ $1$
1.1024636.2t1.a.a $1$ $ 2^{2} \cdot 127 \cdot 2017 $ x2 - 256159 $C_2$ $1$ $1$
1.1027081.2t1.a.a $1$ $ 11 \cdot 93371 $ x2 - x - 256770 $C_2$ $1$ $1$
1.1031001.2t1.a.a $1$ $ 3 \cdot 343667 $ x2 - x - 257750 $C_2$ $1$ $1$
1.1032140.2t1.a.a $1$ $ 2^{2} \cdot 5 \cdot 51607 $ x2 - 258035 $C_2$ $1$ $1$
1.1033441.2t1.a.a $1$ $ 1033441 $ x2 - x - 258360 $C_2$ $1$ $1$
1.1033709.2t1.a.a $1$ $ 797 \cdot 1297 $ x2 - x - 258427 $C_2$ $1$ $1$
1.1034533.2t1.a.a $1$ $ 211 \cdot 4903 $ x2 - x - 258633 $C_2$ $1$ $1$
1.1041639.2t1.a.a $1$ $ 3 \cdot 103 \cdot 3371 $ x2 - x + 260410 $C_2$ $1$ $-1$
1.1045573.2t1.a.a $1$ $ 1045573 $ x2 - x - 261393 $C_2$ $1$ $1$
1.1047017.2t1.a.a $1$ $ 41 \cdot 25537 $ x2 - x - 261754 $C_2$ $1$ $1$
1.1047297.2t1.a.a $1$ $ 3 \cdot 349099 $ x2 - x - 261824 $C_2$ $1$ $1$
1.1048193.2t1.a.a $1$ $ 1048193 $ x2 - x - 262048 $C_2$ $1$ $1$
1.1048413.2t1.a.a $1$ $ 3 \cdot 349471 $ x2 - x - 262103 $C_2$ $1$ $1$
1.1049285.2t1.a.a $1$ $ 5 \cdot 209857 $ x2 - x - 262321 $C_2$ $1$ $1$
1.1049368.2t1.a.a $1$ $ 2^{3} \cdot 131171 $ x2 - 262342 $C_2$ $1$ $1$
1.1052233.2t1.a.a $1$ $ 7 \cdot 13 \cdot 31 \cdot 373 $ x2 - x - 263058 $C_2$ $1$ $1$
1.1052869.2t1.a.a $1$ $ 887 \cdot 1187 $ x2 - x - 263217 $C_2$ $1$ $1$
1.1054012.2t1.a.a $1$ $ 2^{2} \cdot 263503 $ x2 - 263503 $C_2$ $1$ $1$
1.1054013.2t1.a.a $1$ $ 1054013 $ x2 - x - 263503 $C_2$ $1$ $1$
1.1058429.2t1.a.a $1$ $ 439 \cdot 2411 $ x2 - x - 264607 $C_2$ $1$ $1$
1.1059969.2t1.a.a $1$ $ 3 \cdot 137 \cdot 2579 $ x2 - x - 264992 $C_2$ $1$ $1$
1.1060109.2t1.a.a $1$ $ 857 \cdot 1237 $ x2 - x - 265027 $C_2$ $1$ $1$
1.1062137.2t1.a.a $1$ $ 641 \cdot 1657 $ x2 - x - 265534 $C_2$ $1$ $1$
1.1063256.2t1.a.a $1$ $ 2^{3} \cdot 29 \cdot 4583 $ x2 - 265814 $C_2$ $1$ $1$
1.1063369.2t1.a.a $1$ $ 499 \cdot 2131 $ x2 - x - 265842 $C_2$ $1$ $1$
1.1064209.2t1.a.a $1$ $ 19 \cdot 79 \cdot 709 $ x2 - x - 266052 $C_2$ $1$ $1$
1.1068297.2t1.a.a $1$ $ 3 \cdot 17 \cdot 20947 $ x2 - x - 267074 $C_2$ $1$ $1$
1.1068321.2t1.a.a $1$ $ 3 \cdot 53 \cdot 6719 $ x2 - x - 267080 $C_2$ $1$ $1$
1.1069193.2t1.a.a $1$ $ 1069193 $ x2 - x - 267298 $C_2$ $1$ $1$
1.1069765.2t1.a.a $1$ $ 5 \cdot 213953 $ x2 - x - 267441 $C_2$ $1$ $1$
1.1070705.2t1.a.a $1$ $ 5 \cdot 214141 $ x2 - x - 267676 $C_2$ $1$ $1$
1.1072033.2t1.a.a $1$ $ 43 \cdot 107 \cdot 233 $ x2 - x - 268008 $C_2$ $1$ $1$
1.1072473.2t1.a.a $1$ $ 3 \cdot 389 \cdot 919 $ x2 - x - 268118 $C_2$ $1$ $1$
1.1072820.2t1.a.a $1$ $ 2^{2} \cdot 5 \cdot 7 \cdot 79 \cdot 97 $ x2 + 268205 $C_2$ $1$ $-1$
1.1076753.2t1.a.a $1$ $ 1076753 $ x2 - x - 269188 $C_2$ $1$ $1$
1.1078193.2t1.a.a $1$ $ 19 \cdot 56747 $ x2 - x - 269548 $C_2$ $1$ $1$
1.1079897.2t1.a.a $1$ $ 7 \cdot 13 \cdot 11867 $ x2 - x - 269974 $C_2$ $1$ $1$
1.1083633.2t1.a.a $1$ $ 3 \cdot 361211 $ x2 - x - 270908 $C_2$ $1$ $1$
1.1084313.2t1.a.a $1$ $ 1084313 $ x2 - x - 271078 $C_2$ $1$ $1$
Next