Learn more

Refine search


Results (1-50 of at least 1000)

Next
Galois conjugate representations are grouped into single lines.
Label Dimension Conductor Artin stem field $G$ Ind $\chi(c)$
1.1002109.2t1.a.a $1$ $ 1002109 $ \(\Q(\sqrt{1002109}) \) $C_2$ $1$ $1$
1.1002413.2t1.a.a $1$ $ 61 \cdot 16433 $ \(\Q(\sqrt{1002413}) \) $C_2$ $1$ $1$
1.1003541.2t1.a.a $1$ $ 7 \cdot 11 \cdot 13033 $ \(\Q(\sqrt{1003541}) \) $C_2$ $1$ $1$
1.1007137.2t1.a.a $1$ $ 1007137 $ \(\Q(\sqrt{1007137}) \) $C_2$ $1$ $1$
1.1011913.2t1.a.a $1$ $ 7 \cdot 37 \cdot 3907 $ \(\Q(\sqrt{1011913}) \) $C_2$ $1$ $1$
1.1013613.2t1.a.a $1$ $ 3 \cdot 337871 $ \(\Q(\sqrt{1013613}) \) $C_2$ $1$ $1$
1.1015537.2t1.a.a $1$ $ 107 \cdot 9491 $ \(\Q(\sqrt{1015537}) \) $C_2$ $1$ $1$
1.1016777.2t1.a.a $1$ $ 1016777 $ \(\Q(\sqrt{1016777}) \) $C_2$ $1$ $1$
1.1018217.2t1.a.a $1$ $ 1018217 $ \(\Q(\sqrt{1018217}) \) $C_2$ $1$ $1$
1.1020732.2t1.a.a $1$ $ 2^{2} \cdot 3 \cdot 85061 $ \(\Q(\sqrt{255183}) \) $C_2$ $1$ $1$
1.1024469.2t1.a.a $1$ $ 83 \cdot 12343 $ \(\Q(\sqrt{1024469}) \) $C_2$ $1$ $1$
1.1024636.2t1.a.a $1$ $ 2^{2} \cdot 127 \cdot 2017 $ \(\Q(\sqrt{256159}) \) $C_2$ $1$ $1$
1.1027081.2t1.a.a $1$ $ 11 \cdot 93371 $ \(\Q(\sqrt{1027081}) \) $C_2$ $1$ $1$
1.1031001.2t1.a.a $1$ $ 3 \cdot 343667 $ \(\Q(\sqrt{1031001}) \) $C_2$ $1$ $1$
1.1032140.2t1.a.a $1$ $ 2^{2} \cdot 5 \cdot 51607 $ \(\Q(\sqrt{258035}) \) $C_2$ $1$ $1$
1.1033441.2t1.a.a $1$ $ 1033441 $ \(\Q(\sqrt{1033441}) \) $C_2$ $1$ $1$
1.1033709.2t1.a.a $1$ $ 797 \cdot 1297 $ \(\Q(\sqrt{1033709}) \) $C_2$ $1$ $1$
1.1034533.2t1.a.a $1$ $ 211 \cdot 4903 $ \(\Q(\sqrt{1034533}) \) $C_2$ $1$ $1$
1.1041639.2t1.a.a $1$ $ 3 \cdot 103 \cdot 3371 $ \(\Q(\sqrt{-1041639}) \) $C_2$ $1$ $-1$
1.1045573.2t1.a.a $1$ $ 1045573 $ \(\Q(\sqrt{1045573}) \) $C_2$ $1$ $1$
1.1047017.2t1.a.a $1$ $ 41 \cdot 25537 $ \(\Q(\sqrt{1047017}) \) $C_2$ $1$ $1$
1.1047297.2t1.a.a $1$ $ 3 \cdot 349099 $ \(\Q(\sqrt{1047297}) \) $C_2$ $1$ $1$
1.1048193.2t1.a.a $1$ $ 1048193 $ \(\Q(\sqrt{1048193}) \) $C_2$ $1$ $1$
1.1048413.2t1.a.a $1$ $ 3 \cdot 349471 $ \(\Q(\sqrt{1048413}) \) $C_2$ $1$ $1$
1.1049285.2t1.a.a $1$ $ 5 \cdot 209857 $ \(\Q(\sqrt{1049285}) \) $C_2$ $1$ $1$
1.1049368.2t1.a.a $1$ $ 2^{3} \cdot 131171 $ \(\Q(\sqrt{262342}) \) $C_2$ $1$ $1$
1.1052233.2t1.a.a $1$ $ 7 \cdot 13 \cdot 31 \cdot 373 $ \(\Q(\sqrt{1052233}) \) $C_2$ $1$ $1$
1.1052869.2t1.a.a $1$ $ 887 \cdot 1187 $ \(\Q(\sqrt{1052869}) \) $C_2$ $1$ $1$
1.1054012.2t1.a.a $1$ $ 2^{2} \cdot 263503 $ \(\Q(\sqrt{263503}) \) $C_2$ $1$ $1$
1.1054013.2t1.a.a $1$ $ 1054013 $ \(\Q(\sqrt{1054013}) \) $C_2$ $1$ $1$
1.1058429.2t1.a.a $1$ $ 439 \cdot 2411 $ \(\Q(\sqrt{1058429}) \) $C_2$ $1$ $1$
1.1059969.2t1.a.a $1$ $ 3 \cdot 137 \cdot 2579 $ \(\Q(\sqrt{1059969}) \) $C_2$ $1$ $1$
1.1060109.2t1.a.a $1$ $ 857 \cdot 1237 $ \(\Q(\sqrt{1060109}) \) $C_2$ $1$ $1$
1.1062137.2t1.a.a $1$ $ 641 \cdot 1657 $ \(\Q(\sqrt{1062137}) \) $C_2$ $1$ $1$
1.1063256.2t1.a.a $1$ $ 2^{3} \cdot 29 \cdot 4583 $ \(\Q(\sqrt{265814}) \) $C_2$ $1$ $1$
1.1063369.2t1.a.a $1$ $ 499 \cdot 2131 $ \(\Q(\sqrt{1063369}) \) $C_2$ $1$ $1$
1.1064209.2t1.a.a $1$ $ 19 \cdot 79 \cdot 709 $ \(\Q(\sqrt{1064209}) \) $C_2$ $1$ $1$
1.1068297.2t1.a.a $1$ $ 3 \cdot 17 \cdot 20947 $ \(\Q(\sqrt{1068297}) \) $C_2$ $1$ $1$
1.1068321.2t1.a.a $1$ $ 3 \cdot 53 \cdot 6719 $ \(\Q(\sqrt{1068321}) \) $C_2$ $1$ $1$
1.1069193.2t1.a.a $1$ $ 1069193 $ \(\Q(\sqrt{1069193}) \) $C_2$ $1$ $1$
1.1069765.2t1.a.a $1$ $ 5 \cdot 213953 $ \(\Q(\sqrt{1069765}) \) $C_2$ $1$ $1$
1.1070705.2t1.a.a $1$ $ 5 \cdot 214141 $ \(\Q(\sqrt{1070705}) \) $C_2$ $1$ $1$
1.1072033.2t1.a.a $1$ $ 43 \cdot 107 \cdot 233 $ \(\Q(\sqrt{1072033}) \) $C_2$ $1$ $1$
1.1072473.2t1.a.a $1$ $ 3 \cdot 389 \cdot 919 $ \(\Q(\sqrt{1072473}) \) $C_2$ $1$ $1$
1.1072820.2t1.a.a $1$ $ 2^{2} \cdot 5 \cdot 7 \cdot 79 \cdot 97 $ \(\Q(\sqrt{-268205}) \) $C_2$ $1$ $-1$
1.1076753.2t1.a.a $1$ $ 1076753 $ \(\Q(\sqrt{1076753}) \) $C_2$ $1$ $1$
1.1078193.2t1.a.a $1$ $ 19 \cdot 56747 $ \(\Q(\sqrt{1078193}) \) $C_2$ $1$ $1$
1.1079897.2t1.a.a $1$ $ 7 \cdot 13 \cdot 11867 $ \(\Q(\sqrt{1079897}) \) $C_2$ $1$ $1$
1.1083633.2t1.a.a $1$ $ 3 \cdot 361211 $ \(\Q(\sqrt{1083633}) \) $C_2$ $1$ $1$
1.1084313.2t1.a.a $1$ $ 1084313 $ \(\Q(\sqrt{1084313}) \) $C_2$ $1$ $1$
Next