Basic invariants
| Dimension: | $9$ |
| Group: | $S_4\wr C_2$ |
| Conductor: | \(8569013633921581056\)\(\medspace = 2^{21} \cdot 3^{3} \cdot 73^{6} \) |
| Frobenius-Schur indicator: | $1$ |
| Root number: | $1$ |
| Artin stem field: | Galois closure of 8.4.174478792704.1 |
| Galois orbit size: | $1$ |
| Smallest permutation container: | 18T274 |
| Parity: | even |
| Determinant: | 1.24.2t1.a.a |
| Projective image: | $S_4\wr C_2$ |
| Projective stem field: | Galois closure of 8.4.174478792704.1 |
Defining polynomial
| $f(x)$ | $=$ |
\( x^{8} - 4x^{7} + 11x^{6} - 14x^{5} - 24x^{4} + 36x^{3} + 10x^{2} + 8 \)
|
The roots of $f$ are computed in an extension of $\Q_{ 109 }$ to precision 10.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 109 }$:
\( x^{2} + 108x + 6 \)
Roots:
| $r_{ 1 }$ | $=$ |
\( 37 a + 92 + \left(74 a + 11\right)\cdot 109 + \left(6 a + 74\right)\cdot 109^{2} + \left(12 a + 39\right)\cdot 109^{3} + \left(4 a + 104\right)\cdot 109^{4} + \left(2 a + 29\right)\cdot 109^{5} + \left(37 a + 23\right)\cdot 109^{6} + \left(7 a + 31\right)\cdot 109^{7} + \left(74 a + 101\right)\cdot 109^{8} + \left(30 a + 10\right)\cdot 109^{9} +O(109^{10})\)
|
| $r_{ 2 }$ | $=$ |
\( 72 a + 20 + \left(34 a + 49\right)\cdot 109 + \left(102 a + 6\right)\cdot 109^{2} + \left(96 a + 45\right)\cdot 109^{3} + \left(104 a + 96\right)\cdot 109^{4} + \left(106 a + 27\right)\cdot 109^{5} + \left(71 a + 58\right)\cdot 109^{6} + \left(101 a + 1\right)\cdot 109^{7} + \left(34 a + 59\right)\cdot 109^{8} + \left(78 a + 76\right)\cdot 109^{9} +O(109^{10})\)
|
| $r_{ 3 }$ | $=$ |
\( 93 a + 56 + \left(78 a + 42\right)\cdot 109 + \left(57 a + 8\right)\cdot 109^{2} + \left(48 a + 37\right)\cdot 109^{3} + \left(43 a + 17\right)\cdot 109^{4} + \left(34 a + 47\right)\cdot 109^{5} + \left(47 a + 27\right)\cdot 109^{6} + \left(79 a + 59\right)\cdot 109^{7} + \left(97 a + 80\right)\cdot 109^{8} + \left(28 a + 33\right)\cdot 109^{9} +O(109^{10})\)
|
| $r_{ 4 }$ | $=$ |
\( 22 + 11\cdot 109 + 78\cdot 109^{2} + 81\cdot 109^{3} + 95\cdot 109^{4} + 9\cdot 109^{5} + 97\cdot 109^{6} + 89\cdot 109^{7} + 75\cdot 109^{8} + 96\cdot 109^{9} +O(109^{10})\)
|
| $r_{ 5 }$ | $=$ |
\( 16 a + 40 + \left(30 a + 28\right)\cdot 109 + \left(51 a + 96\right)\cdot 109^{2} + \left(60 a + 27\right)\cdot 109^{3} + \left(65 a + 12\right)\cdot 109^{4} + \left(74 a + 38\right)\cdot 109^{5} + \left(61 a + 40\right)\cdot 109^{6} + \left(29 a + 91\right)\cdot 109^{7} + \left(11 a + 98\right)\cdot 109^{8} + \left(80 a + 73\right)\cdot 109^{9} +O(109^{10})\)
|
| $r_{ 6 }$ | $=$ |
\( 26 a + 41 + \left(5 a + 34\right)\cdot 109 + \left(29 a + 2\right)\cdot 109^{2} + \left(23 a + 15\right)\cdot 109^{3} + \left(5 a + 72\right)\cdot 109^{4} + \left(58 a + 53\right)\cdot 109^{5} + \left(a + 96\right)\cdot 109^{6} + \left(10 a + 33\right)\cdot 109^{7} + \left(4 a + 86\right)\cdot 109^{8} + \left(5 a + 64\right)\cdot 109^{9} +O(109^{10})\)
|
| $r_{ 7 }$ | $=$ |
\( 102 + 26\cdot 109 + 35\cdot 109^{2} + 71\cdot 109^{3} + 92\cdot 109^{4} + 13\cdot 109^{5} + 53\cdot 109^{6} + 86\cdot 109^{7} + 71\cdot 109^{8} + 13\cdot 109^{9} +O(109^{10})\)
|
| $r_{ 8 }$ | $=$ |
\( 83 a + 67 + \left(103 a + 13\right)\cdot 109 + \left(79 a + 26\right)\cdot 109^{2} + \left(85 a + 9\right)\cdot 109^{3} + \left(103 a + 54\right)\cdot 109^{4} + \left(50 a + 106\right)\cdot 109^{5} + \left(107 a + 39\right)\cdot 109^{6} + \left(98 a + 42\right)\cdot 109^{7} + \left(104 a + 80\right)\cdot 109^{8} + \left(103 a + 65\right)\cdot 109^{9} +O(109^{10})\)
|
Generators of the action on the roots $r_1, \ldots, r_{ 8 }$
| Cycle notation |
Character values on conjugacy classes
| Size | Order | Action on $r_1, \ldots, r_{ 8 }$ | Character value | Complex conjugation |
| $1$ | $1$ | $()$ | $9$ | |
| $6$ | $2$ | $(3,5)(4,7)$ | $-3$ | |
| $9$ | $2$ | $(1,6)(2,8)(3,5)(4,7)$ | $1$ | |
| $12$ | $2$ | $(1,2)$ | $3$ | |
| $24$ | $2$ | $(1,3)(2,4)(5,6)(7,8)$ | $-3$ | |
| $36$ | $2$ | $(1,2)(3,4)$ | $1$ | ✓ |
| $36$ | $2$ | $(1,2)(3,5)(4,7)$ | $-1$ | |
| $16$ | $3$ | $(1,6,8)$ | $0$ | |
| $64$ | $3$ | $(1,6,8)(4,5,7)$ | $0$ | |
| $12$ | $4$ | $(3,4,5,7)$ | $-3$ | |
| $36$ | $4$ | $(1,2,6,8)(3,4,5,7)$ | $1$ | |
| $36$ | $4$ | $(1,2,6,8)(3,5)(4,7)$ | $1$ | |
| $72$ | $4$ | $(1,3,6,5)(2,4,8,7)$ | $1$ | |
| $72$ | $4$ | $(1,2)(3,4,5,7)$ | $-1$ | |
| $144$ | $4$ | $(1,4,2,3)(5,6)(7,8)$ | $-1$ | |
| $48$ | $6$ | $(1,8,6)(3,5)(4,7)$ | $0$ | |
| $96$ | $6$ | $(1,2)(4,7,5)$ | $0$ | |
| $192$ | $6$ | $(1,4,6,5,8,7)(2,3)$ | $0$ | |
| $144$ | $8$ | $(1,3,2,4,6,5,8,7)$ | $1$ | |
| $96$ | $12$ | $(1,6,8)(3,4,5,7)$ | $0$ |