Properties

Label 9.856...056.18t274.a.a
Dimension $9$
Group $S_4\wr C_2$
Conductor $8.569\times 10^{18}$
Root number $1$
Indicator $1$

Related objects

Downloads

Learn more

Basic invariants

Dimension: $9$
Group: $S_4\wr C_2$
Conductor: \(8569013633921581056\)\(\medspace = 2^{21} \cdot 3^{3} \cdot 73^{6} \)
Frobenius-Schur indicator: $1$
Root number: $1$
Artin stem field: Galois closure of 8.4.174478792704.1
Galois orbit size: $1$
Smallest permutation container: 18T274
Parity: even
Determinant: 1.24.2t1.a.a
Projective image: $S_4\wr C_2$
Projective stem field: Galois closure of 8.4.174478792704.1

Defining polynomial

$f(x)$$=$ \( x^{8} - 4x^{7} + 11x^{6} - 14x^{5} - 24x^{4} + 36x^{3} + 10x^{2} + 8 \) Copy content Toggle raw display .

The roots of $f$ are computed in an extension of $\Q_{ 109 }$ to precision 10.

Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 109 }$: \( x^{2} + 108x + 6 \) Copy content Toggle raw display

Roots:
$r_{ 1 }$ $=$ \( 37 a + 92 + \left(74 a + 11\right)\cdot 109 + \left(6 a + 74\right)\cdot 109^{2} + \left(12 a + 39\right)\cdot 109^{3} + \left(4 a + 104\right)\cdot 109^{4} + \left(2 a + 29\right)\cdot 109^{5} + \left(37 a + 23\right)\cdot 109^{6} + \left(7 a + 31\right)\cdot 109^{7} + \left(74 a + 101\right)\cdot 109^{8} + \left(30 a + 10\right)\cdot 109^{9} +O(109^{10})\) Copy content Toggle raw display
$r_{ 2 }$ $=$ \( 72 a + 20 + \left(34 a + 49\right)\cdot 109 + \left(102 a + 6\right)\cdot 109^{2} + \left(96 a + 45\right)\cdot 109^{3} + \left(104 a + 96\right)\cdot 109^{4} + \left(106 a + 27\right)\cdot 109^{5} + \left(71 a + 58\right)\cdot 109^{6} + \left(101 a + 1\right)\cdot 109^{7} + \left(34 a + 59\right)\cdot 109^{8} + \left(78 a + 76\right)\cdot 109^{9} +O(109^{10})\) Copy content Toggle raw display
$r_{ 3 }$ $=$ \( 93 a + 56 + \left(78 a + 42\right)\cdot 109 + \left(57 a + 8\right)\cdot 109^{2} + \left(48 a + 37\right)\cdot 109^{3} + \left(43 a + 17\right)\cdot 109^{4} + \left(34 a + 47\right)\cdot 109^{5} + \left(47 a + 27\right)\cdot 109^{6} + \left(79 a + 59\right)\cdot 109^{7} + \left(97 a + 80\right)\cdot 109^{8} + \left(28 a + 33\right)\cdot 109^{9} +O(109^{10})\) Copy content Toggle raw display
$r_{ 4 }$ $=$ \( 22 + 11\cdot 109 + 78\cdot 109^{2} + 81\cdot 109^{3} + 95\cdot 109^{4} + 9\cdot 109^{5} + 97\cdot 109^{6} + 89\cdot 109^{7} + 75\cdot 109^{8} + 96\cdot 109^{9} +O(109^{10})\) Copy content Toggle raw display
$r_{ 5 }$ $=$ \( 16 a + 40 + \left(30 a + 28\right)\cdot 109 + \left(51 a + 96\right)\cdot 109^{2} + \left(60 a + 27\right)\cdot 109^{3} + \left(65 a + 12\right)\cdot 109^{4} + \left(74 a + 38\right)\cdot 109^{5} + \left(61 a + 40\right)\cdot 109^{6} + \left(29 a + 91\right)\cdot 109^{7} + \left(11 a + 98\right)\cdot 109^{8} + \left(80 a + 73\right)\cdot 109^{9} +O(109^{10})\) Copy content Toggle raw display
$r_{ 6 }$ $=$ \( 26 a + 41 + \left(5 a + 34\right)\cdot 109 + \left(29 a + 2\right)\cdot 109^{2} + \left(23 a + 15\right)\cdot 109^{3} + \left(5 a + 72\right)\cdot 109^{4} + \left(58 a + 53\right)\cdot 109^{5} + \left(a + 96\right)\cdot 109^{6} + \left(10 a + 33\right)\cdot 109^{7} + \left(4 a + 86\right)\cdot 109^{8} + \left(5 a + 64\right)\cdot 109^{9} +O(109^{10})\) Copy content Toggle raw display
$r_{ 7 }$ $=$ \( 102 + 26\cdot 109 + 35\cdot 109^{2} + 71\cdot 109^{3} + 92\cdot 109^{4} + 13\cdot 109^{5} + 53\cdot 109^{6} + 86\cdot 109^{7} + 71\cdot 109^{8} + 13\cdot 109^{9} +O(109^{10})\) Copy content Toggle raw display
$r_{ 8 }$ $=$ \( 83 a + 67 + \left(103 a + 13\right)\cdot 109 + \left(79 a + 26\right)\cdot 109^{2} + \left(85 a + 9\right)\cdot 109^{3} + \left(103 a + 54\right)\cdot 109^{4} + \left(50 a + 106\right)\cdot 109^{5} + \left(107 a + 39\right)\cdot 109^{6} + \left(98 a + 42\right)\cdot 109^{7} + \left(104 a + 80\right)\cdot 109^{8} + \left(103 a + 65\right)\cdot 109^{9} +O(109^{10})\) Copy content Toggle raw display

Generators of the action on the roots $r_1, \ldots, r_{ 8 }$

Cycle notation
$(1,2)$
$(1,3)(2,4)(5,6)(7,8)$
$(1,2,6,8)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 8 }$ Character valueComplex conjugation
$1$$1$$()$$9$
$6$$2$$(3,5)(4,7)$$-3$
$9$$2$$(1,6)(2,8)(3,5)(4,7)$$1$
$12$$2$$(1,2)$$3$
$24$$2$$(1,3)(2,4)(5,6)(7,8)$$-3$
$36$$2$$(1,2)(3,4)$$1$
$36$$2$$(1,2)(3,5)(4,7)$$-1$
$16$$3$$(1,6,8)$$0$
$64$$3$$(1,6,8)(4,5,7)$$0$
$12$$4$$(3,4,5,7)$$-3$
$36$$4$$(1,2,6,8)(3,4,5,7)$$1$
$36$$4$$(1,2,6,8)(3,5)(4,7)$$1$
$72$$4$$(1,3,6,5)(2,4,8,7)$$1$
$72$$4$$(1,2)(3,4,5,7)$$-1$
$144$$4$$(1,4,2,3)(5,6)(7,8)$$-1$
$48$$6$$(1,8,6)(3,5)(4,7)$$0$
$96$$6$$(1,2)(4,7,5)$$0$
$192$$6$$(1,4,6,5,8,7)(2,3)$$0$
$144$$8$$(1,3,2,4,6,5,8,7)$$1$
$96$$12$$(1,6,8)(3,4,5,7)$$0$