Properties

Label 9.144...968.10t32.a.a
Dimension $9$
Group $S_6$
Conductor $1.446\times 10^{16}$
Root number $1$
Indicator $1$

Related objects

Downloads

Learn more

Basic invariants

Dimension: $9$
Group: $S_6$
Conductor: \(14461155336531968\)\(\medspace = 2^{12} \cdot 15227^{3} \)
Frobenius-Schur indicator: $1$
Root number: $1$
Artin stem field: Galois closure of 6.4.974528.1
Galois orbit size: $1$
Smallest permutation container: $S_{6}$
Parity: odd
Determinant: 1.15227.2t1.a.a
Projective image: $S_6$
Projective stem field: Galois closure of 6.4.974528.1

Defining polynomial

$f(x)$$=$ \( x^{6} - 2x^{5} - x^{4} + 4x^{3} - 4x^{2} + 1 \) Copy content Toggle raw display .

The roots of $f$ are computed in an extension of $\Q_{ 47 }$ to precision 5.

Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 47 }$: \( x^{2} + 45x + 5 \) Copy content Toggle raw display

Roots:
$r_{ 1 }$ $=$ \( 25 a + \left(2 a + 3\right)\cdot 47 + 46 a\cdot 47^{2} + \left(19 a + 5\right)\cdot 47^{3} + \left(29 a + 1\right)\cdot 47^{4} +O(47^{5})\) Copy content Toggle raw display
$r_{ 2 }$ $=$ \( 22 a + 3 + \left(44 a + 30\right)\cdot 47 + 42\cdot 47^{2} + \left(27 a + 45\right)\cdot 47^{3} + \left(17 a + 39\right)\cdot 47^{4} +O(47^{5})\) Copy content Toggle raw display
$r_{ 3 }$ $=$ \( 3 + 43\cdot 47 + 2\cdot 47^{2} + 8\cdot 47^{3} + 33\cdot 47^{4} +O(47^{5})\) Copy content Toggle raw display
$r_{ 4 }$ $=$ \( 43 a + 34 + \left(18 a + 37\right)\cdot 47 + \left(30 a + 19\right)\cdot 47^{2} + \left(31 a + 4\right)\cdot 47^{3} + \left(35 a + 4\right)\cdot 47^{4} +O(47^{5})\) Copy content Toggle raw display
$r_{ 5 }$ $=$ \( 30 + 41\cdot 47 + 13\cdot 47^{2} + 40\cdot 47^{3} + 18\cdot 47^{4} +O(47^{5})\) Copy content Toggle raw display
$r_{ 6 }$ $=$ \( 4 a + 26 + \left(28 a + 32\right)\cdot 47 + \left(16 a + 14\right)\cdot 47^{2} + \left(15 a + 37\right)\cdot 47^{3} + \left(11 a + 43\right)\cdot 47^{4} +O(47^{5})\) Copy content Toggle raw display

Generators of the action on the roots $r_1, \ldots, r_{ 6 }$

Cycle notation
$(1,2)$
$(1,2,3,4,5,6)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 6 }$ Character valueComplex conjugation
$1$$1$$()$$9$
$15$$2$$(1,2)(3,4)(5,6)$$3$
$15$$2$$(1,2)$$3$
$45$$2$$(1,2)(3,4)$$1$
$40$$3$$(1,2,3)(4,5,6)$$0$
$40$$3$$(1,2,3)$$0$
$90$$4$$(1,2,3,4)(5,6)$$1$
$90$$4$$(1,2,3,4)$$-1$
$144$$5$$(1,2,3,4,5)$$-1$
$120$$6$$(1,2,3,4,5,6)$$0$
$120$$6$$(1,2,3)(4,5)$$0$