Properties

Label 6.151400448.8t42.a.a
Dimension $6$
Group $A_4\wr C_2$
Conductor $151400448$
Root number $1$
Indicator $1$

Related objects

Downloads

Learn more

Basic invariants

Dimension: $6$
Group: $A_4\wr C_2$
Conductor: \(151400448\)\(\medspace = 2^{12} \cdot 3^{3} \cdot 37^{2} \)
Frobenius-Schur indicator: $1$
Root number: $1$
Artin stem field: Galois closure of 8.0.454201344.2
Galois orbit size: $1$
Smallest permutation container: $A_4\wr C_2$
Parity: odd
Determinant: 1.3.2t1.a.a
Projective image: $A_4\wr C_2$
Projective stem field: Galois closure of 8.0.454201344.2

Defining polynomial

$f(x)$$=$ \( x^{8} - 2x^{7} - 4x^{6} + 14x^{5} - 4x^{4} - 22x^{3} + 20x^{2} - 6x + 7 \) Copy content Toggle raw display .

The roots of $f$ are computed in an extension of $\Q_{ 19 }$ to precision 10.

Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 19 }$: \( x^{3} + 4x + 17 \) Copy content Toggle raw display

Roots:
$r_{ 1 }$ $=$ \( a^{2} + 2 a + 18 + \left(3 a^{2} + 2 a + 13\right)\cdot 19 + \left(18 a^{2} + 3 a + 1\right)\cdot 19^{2} + \left(8 a^{2} + 4 a + 11\right)\cdot 19^{3} + \left(15 a^{2} + 3 a + 17\right)\cdot 19^{4} + \left(6 a^{2} + 14 a + 9\right)\cdot 19^{5} + \left(7 a^{2} + 3 a + 14\right)\cdot 19^{6} + \left(a^{2} + 2 a + 17\right)\cdot 19^{7} + \left(4 a^{2} + 3 a + 4\right)\cdot 19^{8} + \left(8 a + 14\right)\cdot 19^{9} +O(19^{10})\) Copy content Toggle raw display
$r_{ 2 }$ $=$ \( 8 a^{2} + 17 a + 5 + \left(18 a^{2} + 6 a + 4\right)\cdot 19 + \left(14 a^{2} + 18 a + 12\right)\cdot 19^{2} + \left(3 a^{2} + 9 a + 3\right)\cdot 19^{3} + \left(14 a^{2} + 17 a + 14\right)\cdot 19^{4} + \left(a^{2} + 2\right)\cdot 19^{5} + \left(5 a^{2} + 9 a + 2\right)\cdot 19^{6} + \left(11 a^{2} + 18 a + 6\right)\cdot 19^{7} + \left(17 a^{2} + 17 a + 9\right)\cdot 19^{8} + \left(a^{2} + 5 a + 12\right)\cdot 19^{9} +O(19^{10})\) Copy content Toggle raw display
$r_{ 3 }$ $=$ \( 16 + 8\cdot 19 + 10\cdot 19^{2} + 18\cdot 19^{3} + 11\cdot 19^{4} + 7\cdot 19^{5} + 13\cdot 19^{6} + 6\cdot 19^{7} + 14\cdot 19^{8} + 4\cdot 19^{9} +O(19^{10})\) Copy content Toggle raw display
$r_{ 4 }$ $=$ \( 3 a^{2} + 9 a + 14 + \left(16 a^{2} + 5 a + 11\right)\cdot 19 + \left(16 a^{2} + a + 15\right)\cdot 19^{2} + \left(16 a^{2} + 17 a + 12\right)\cdot 19^{3} + \left(16 a^{2} + 5 a + 10\right)\cdot 19^{4} + \left(13 a^{2} + 3 a + 2\right)\cdot 19^{5} + \left(11 a^{2} + 12 a + 10\right)\cdot 19^{6} + \left(18 a^{2} + 15 a + 3\right)\cdot 19^{7} + \left(11 a^{2} + 7 a + 7\right)\cdot 19^{8} + \left(18 a^{2} + 10 a + 5\right)\cdot 19^{9} +O(19^{10})\) Copy content Toggle raw display
$r_{ 5 }$ $=$ \( 2 a^{2} + 6 a + 5 + \left(13 a^{2} + a + 16\right)\cdot 19 + \left(11 a^{2} + 7 a + 1\right)\cdot 19^{2} + \left(16 a^{2} + 5 a + 12\right)\cdot 19^{3} + \left(18 a^{2} + 3 a + 9\right)\cdot 19^{4} + \left(12 a^{2} + 10 a + 6\right)\cdot 19^{5} + \left(2 a^{2} + 5 a + 11\right)\cdot 19^{6} + \left(7 a^{2} + a + 4\right)\cdot 19^{7} + \left(12 a^{2} + a + 8\right)\cdot 19^{8} + \left(3 a^{2} + 3\right)\cdot 19^{9} +O(19^{10})\) Copy content Toggle raw display
$r_{ 6 }$ $=$ \( 17 + 10\cdot 19 + 8\cdot 19^{2} + 2\cdot 19^{3} + 10\cdot 19^{4} + 6\cdot 19^{5} + 8\cdot 19^{6} + 13\cdot 19^{7} + 19^{8} + 11\cdot 19^{9} +O(19^{10})\) Copy content Toggle raw display
$r_{ 7 }$ $=$ \( 14 a^{2} + 4 a + 18 + \left(8 a^{2} + 12 a + 10\right)\cdot 19 + \left(9 a^{2} + 10 a + 8\right)\cdot 19^{2} + \left(4 a^{2} + 15 a + 11\right)\cdot 19^{3} + \left(2 a^{2} + 9 a + 9\right)\cdot 19^{4} + \left(11 a^{2} + 5 a + 1\right)\cdot 19^{5} + \left(4 a^{2} + a + 10\right)\cdot 19^{6} + \left(12 a^{2} + 2 a + 5\right)\cdot 19^{7} + \left(13 a^{2} + 10 a + 5\right)\cdot 19^{8} + \left(15 a^{2} + 8 a + 10\right)\cdot 19^{9} +O(19^{10})\) Copy content Toggle raw display
$r_{ 8 }$ $=$ \( 10 a^{2} + 4 + \left(16 a^{2} + 10 a + 18\right)\cdot 19 + \left(4 a^{2} + 16 a + 16\right)\cdot 19^{2} + \left(6 a^{2} + 4 a + 3\right)\cdot 19^{3} + \left(8 a^{2} + 17 a + 11\right)\cdot 19^{4} + \left(10 a^{2} + 3 a\right)\cdot 19^{5} + \left(6 a^{2} + 6 a + 6\right)\cdot 19^{6} + \left(6 a^{2} + 17 a + 18\right)\cdot 19^{7} + \left(16 a^{2} + 16 a + 5\right)\cdot 19^{8} + \left(16 a^{2} + 4 a + 14\right)\cdot 19^{9} +O(19^{10})\) Copy content Toggle raw display

Generators of the action on the roots $r_1, \ldots, r_{ 8 }$

Cycle notation
$(1,3,8)$
$(4,6,7)$
$(4,5,6)$
$(1,8,2)$
$(1,5)(2,6)(3,7)(4,8)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 8 }$ Character valueComplex conjugation
$1$$1$$()$$6$
$6$$2$$(1,3)(2,8)$$2$
$9$$2$$(1,3)(2,8)(4,6)(5,7)$$-2$
$12$$2$$(1,5)(2,6)(3,7)(4,8)$$0$
$8$$3$$(1,3,8)$$3$
$8$$3$$(1,8,3)$$3$
$16$$3$$(1,3,8)(4,5,7)$$0$
$16$$3$$(1,8,3)(4,7,5)$$0$
$32$$3$$(1,3,8)(4,6,7)$$0$
$36$$4$$(1,7,3,5)(2,4,8,6)$$0$
$24$$6$$(1,3)(2,8)(4,6,7)$$-1$
$24$$6$$(1,3)(2,8)(4,7,6)$$-1$
$48$$6$$(1,7,3,4,8,5)(2,6)$$0$
$48$$6$$(1,5,8,4,3,7)(2,6)$$0$