Properties

Label 4.3897.6t13.b.a
Dimension $4$
Group $C_3^2:D_4$
Conductor $3897$
Root number $1$
Indicator $1$

Related objects

Downloads

Learn more

Basic invariants

Dimension: $4$
Group: $C_3^2:D_4$
Conductor: \(3897\)\(\medspace = 3^{2} \cdot 433 \)
Frobenius-Schur indicator: $1$
Root number: $1$
Artin stem field: Galois closure of 6.0.11691.1
Galois orbit size: $1$
Smallest permutation container: $C_3^2:D_4$
Parity: even
Determinant: 1.433.2t1.a.a
Projective image: $\SOPlus(4,2)$
Projective stem field: Galois closure of 6.0.11691.1

Defining polynomial

$f(x)$$=$ \( x^{6} - x^{5} - x^{2} + x + 1 \) Copy content Toggle raw display .

The roots of $f$ are computed in an extension of $\Q_{ 13 }$ to precision 5.

Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 13 }$: \( x^{2} + 12x + 2 \) Copy content Toggle raw display

Roots:
$r_{ 1 }$ $=$ \( 10 a + 11 + \left(4 a + 7\right)\cdot 13 + \left(4 a + 3\right)\cdot 13^{2} + \left(8 a + 4\right)\cdot 13^{3} + \left(10 a + 11\right)\cdot 13^{4} +O(13^{5})\) Copy content Toggle raw display
$r_{ 2 }$ $=$ \( a + 3 + 9\cdot 13 + \left(10 a + 9\right)\cdot 13^{2} + \left(4 a + 9\right)\cdot 13^{3} + \left(7 a + 2\right)\cdot 13^{4} +O(13^{5})\) Copy content Toggle raw display
$r_{ 3 }$ $=$ \( 3 + 10\cdot 13 + 2\cdot 13^{2} + 2\cdot 13^{3} + 10\cdot 13^{4} +O(13^{5})\) Copy content Toggle raw display
$r_{ 4 }$ $=$ \( 11 + 10\cdot 13^{3} + 8\cdot 13^{4} +O(13^{5})\) Copy content Toggle raw display
$r_{ 5 }$ $=$ \( 12 a + 4 + \left(12 a + 8\right)\cdot 13 + \left(2 a + 6\right)\cdot 13^{2} + \left(8 a + 4\right)\cdot 13^{3} + \left(5 a + 5\right)\cdot 13^{4} +O(13^{5})\) Copy content Toggle raw display
$r_{ 6 }$ $=$ \( 3 a + 8 + \left(8 a + 2\right)\cdot 13 + \left(8 a + 3\right)\cdot 13^{2} + \left(4 a + 8\right)\cdot 13^{3} + 2 a\cdot 13^{4} +O(13^{5})\) Copy content Toggle raw display

Generators of the action on the roots $r_1, \ldots, r_{ 6 }$

Cycle notation
$(1,2)(3,4)(5,6)$
$(2,3)$
$(2,3,5)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 6 }$ Character value
$1$$1$$()$$4$
$6$$2$$(1,2)(3,4)(5,6)$$0$
$6$$2$$(3,5)$$2$
$9$$2$$(3,5)(4,6)$$0$
$4$$3$$(1,4,6)(2,3,5)$$-2$
$4$$3$$(1,4,6)$$1$
$18$$4$$(1,2)(3,6,5,4)$$0$
$12$$6$$(1,3,4,5,6,2)$$0$
$12$$6$$(1,4,6)(3,5)$$-1$

The blue line marks the conjugacy class containing complex conjugation.