Basic invariants
Dimension: | $3$ |
Group: | $S_4$ |
Conductor: | \(50432\)\(\medspace = 2^{8} \cdot 197 \) |
Frobenius-Schur indicator: | $1$ |
Root number: | $1$ |
Artin stem field: | Galois closure of 4.0.50432.1 |
Galois orbit size: | $1$ |
Smallest permutation container: | $S_4$ |
Parity: | even |
Determinant: | 1.197.2t1.a.a |
Projective image: | $S_4$ |
Projective stem field: | Galois closure of 4.0.50432.1 |
Defining polynomial
$f(x)$ | $=$ |
\( x^{4} + 4x^{2} - 4x + 6 \)
|
The roots of $f$ are computed in an extension of $\Q_{ 5 }$ to precision 5.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 5 }$:
\( x^{2} + 4x + 2 \)
Roots:
$r_{ 1 }$ | $=$ |
\( 2 + 5 + 3\cdot 5^{2} + 2\cdot 5^{4} +O(5^{5})\)
|
$r_{ 2 }$ | $=$ |
\( 4 + 2\cdot 5 + 5^{2} + 5^{4} +O(5^{5})\)
|
$r_{ 3 }$ | $=$ |
\( 4 a + 2\cdot 5 + \left(a + 2\right)\cdot 5^{2} + \left(3 a + 3\right)\cdot 5^{3} + \left(2 a + 3\right)\cdot 5^{4} +O(5^{5})\)
|
$r_{ 4 }$ | $=$ |
\( a + 4 + \left(4 a + 3\right)\cdot 5 + \left(3 a + 2\right)\cdot 5^{2} + a\cdot 5^{3} + \left(2 a + 3\right)\cdot 5^{4} +O(5^{5})\)
|
Generators of the action on the roots $r_1, \ldots, r_{ 4 }$
Cycle notation |
Character values on conjugacy classes
Size | Order | Action on $r_1, \ldots, r_{ 4 }$ | Character value | Complex conjugation |
$1$ | $1$ | $()$ | $3$ | |
$3$ | $2$ | $(1,2)(3,4)$ | $-1$ | ✓ |
$6$ | $2$ | $(1,2)$ | $1$ | |
$8$ | $3$ | $(1,2,3)$ | $0$ | |
$6$ | $4$ | $(1,2,3,4)$ | $-1$ |