Properties

Label 3.27108.4t5.a.a
Dimension $3$
Group $S_4$
Conductor $27108$
Root number $1$
Indicator $1$

Related objects

Downloads

Learn more

Basic invariants

Dimension: $3$
Group: $S_4$
Conductor: \(27108\)\(\medspace = 2^{2} \cdot 3^{3} \cdot 251 \)
Frobenius-Schur indicator: $1$
Root number: $1$
Artin stem field: Galois closure of 4.2.27108.1
Galois orbit size: $1$
Smallest permutation container: $S_4$
Parity: odd
Determinant: 1.3012.2t1.a.a
Projective image: $S_4$
Projective stem field: Galois closure of 4.2.27108.1

Defining polynomial

$f(x)$$=$ \( x^{4} - x^{3} + 2x - 8 \) Copy content Toggle raw display .

The roots of $f$ are computed in $\Q_{ 127 }$ to precision 5.

Roots:
$r_{ 1 }$ $=$ \( 9 + 26\cdot 127 + 8\cdot 127^{2} + 2\cdot 127^{3} + 110\cdot 127^{4} +O(127^{5})\) Copy content Toggle raw display
$r_{ 2 }$ $=$ \( 59 + 49\cdot 127 + 86\cdot 127^{2} + 106\cdot 127^{3} + 34\cdot 127^{4} +O(127^{5})\) Copy content Toggle raw display
$r_{ 3 }$ $=$ \( 77 + 110\cdot 127 + 23\cdot 127^{2} + 4\cdot 127^{3} + 9\cdot 127^{4} +O(127^{5})\) Copy content Toggle raw display
$r_{ 4 }$ $=$ \( 110 + 67\cdot 127 + 8\cdot 127^{2} + 14\cdot 127^{3} + 100\cdot 127^{4} +O(127^{5})\) Copy content Toggle raw display

Generators of the action on the roots $r_1, \ldots, r_{ 4 }$

Cycle notation
$(1,2,3,4)$
$(1,2)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 4 }$ Character valueComplex conjugation
$1$$1$$()$$3$
$3$$2$$(1,2)(3,4)$$-1$
$6$$2$$(1,2)$$1$
$8$$3$$(1,2,3)$$0$
$6$$4$$(1,2,3,4)$$-1$