Basic invariants
| Dimension: | $3$ |
| Group: | $S_4$ |
| Conductor: | \(27108\)\(\medspace = 2^{2} \cdot 3^{3} \cdot 251 \) |
| Frobenius-Schur indicator: | $1$ |
| Root number: | $1$ |
| Artin stem field: | Galois closure of 4.2.27108.1 |
| Galois orbit size: | $1$ |
| Smallest permutation container: | $S_4$ |
| Parity: | odd |
| Determinant: | 1.3012.2t1.a.a |
| Projective image: | $S_4$ |
| Projective stem field: | Galois closure of 4.2.27108.1 |
Defining polynomial
| $f(x)$ | $=$ |
\( x^{4} - x^{3} + 2x - 8 \)
|
The roots of $f$ are computed in $\Q_{ 127 }$ to precision 5.
Roots:
| $r_{ 1 }$ | $=$ |
\( 9 + 26\cdot 127 + 8\cdot 127^{2} + 2\cdot 127^{3} + 110\cdot 127^{4} +O(127^{5})\)
|
| $r_{ 2 }$ | $=$ |
\( 59 + 49\cdot 127 + 86\cdot 127^{2} + 106\cdot 127^{3} + 34\cdot 127^{4} +O(127^{5})\)
|
| $r_{ 3 }$ | $=$ |
\( 77 + 110\cdot 127 + 23\cdot 127^{2} + 4\cdot 127^{3} + 9\cdot 127^{4} +O(127^{5})\)
|
| $r_{ 4 }$ | $=$ |
\( 110 + 67\cdot 127 + 8\cdot 127^{2} + 14\cdot 127^{3} + 100\cdot 127^{4} +O(127^{5})\)
|
Generators of the action on the roots $r_1, \ldots, r_{ 4 }$
| Cycle notation |
Character values on conjugacy classes
| Size | Order | Action on $r_1, \ldots, r_{ 4 }$ | Character value | Complex conjugation |
| $1$ | $1$ | $()$ | $3$ | |
| $3$ | $2$ | $(1,2)(3,4)$ | $-1$ | |
| $6$ | $2$ | $(1,2)$ | $1$ | ✓ |
| $8$ | $3$ | $(1,2,3)$ | $0$ | |
| $6$ | $4$ | $(1,2,3,4)$ | $-1$ |