Properties

Label 3.11453152.4t5.a.a
Dimension $3$
Group $S_4$
Conductor $11453152$
Root number $1$
Indicator $1$

Related objects

Downloads

Learn more

Basic invariants

Dimension: $3$
Group: $S_4$
Conductor: \(11453152\)\(\medspace = 2^{5} \cdot 71^{3} \)
Frobenius-Schur indicator: $1$
Root number: $1$
Artin stem field: Galois closure of 4.0.11453152.1
Galois orbit size: $1$
Smallest permutation container: $S_4$
Parity: even
Determinant: 1.568.2t1.a.a
Projective image: $S_4$
Projective stem field: Galois closure of 4.0.11453152.1

Defining polynomial

$f(x)$$=$ \( x^{4} - 2x^{3} + 37x^{2} + 248x + 324 \) Copy content Toggle raw display .

The roots of $f$ are computed in $\Q_{ 127 }$ to precision 5.

Roots:
$r_{ 1 }$ $=$ \( 7 + 84\cdot 127 + 42\cdot 127^{2} + 33\cdot 127^{3} + 33\cdot 127^{4} +O(127^{5})\) Copy content Toggle raw display
$r_{ 2 }$ $=$ \( 12 + 103\cdot 127 + 11\cdot 127^{2} + 99\cdot 127^{3} + 127^{4} +O(127^{5})\) Copy content Toggle raw display
$r_{ 3 }$ $=$ \( 20 + 47\cdot 127 + 104\cdot 127^{2} + 67\cdot 127^{3} + 9\cdot 127^{4} +O(127^{5})\) Copy content Toggle raw display
$r_{ 4 }$ $=$ \( 90 + 19\cdot 127 + 95\cdot 127^{2} + 53\cdot 127^{3} + 82\cdot 127^{4} +O(127^{5})\) Copy content Toggle raw display

Generators of the action on the roots $r_1, \ldots, r_{ 4 }$

Cycle notation
$(1,2,3,4)$
$(1,2)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 4 }$ Character valueComplex conjugation
$1$$1$$()$$3$
$3$$2$$(1,2)(3,4)$$-1$
$6$$2$$(1,2)$$1$
$8$$3$$(1,2,3)$$0$
$6$$4$$(1,2,3,4)$$-1$