Properties

Label 2.936.6t3.d.a
Dimension $2$
Group $D_{6}$
Conductor $936$
Root number $1$
Indicator $1$

Related objects

Downloads

Learn more

Basic invariants

Dimension: $2$
Group: $D_{6}$
Conductor: \(936\)\(\medspace = 2^{3} \cdot 3^{2} \cdot 13 \)
Frobenius-Schur indicator: $1$
Root number: $1$
Artin stem field: Galois closure of 6.0.292032.1
Galois orbit size: $1$
Smallest permutation container: $D_{6}$
Parity: odd
Determinant: 1.104.2t1.b.a
Projective image: $S_3$
Projective stem field: Galois closure of 3.1.104.1

Defining polynomial

$f(x)$$=$ \( x^{6} + x^{4} - 4x^{3} + x^{2} - 2x + 4 \) Copy content Toggle raw display .

The roots of $f$ are computed in an extension of $\Q_{ 19 }$ to precision 5.

Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 19 }$: \( x^{2} + 18x + 2 \) Copy content Toggle raw display

Roots:
$r_{ 1 }$ $=$ \( 7 a + 8 + \left(14 a + 12\right)\cdot 19 + 15\cdot 19^{2} + \left(15 a + 16\right)\cdot 19^{3} + \left(11 a + 15\right)\cdot 19^{4} +O(19^{5})\) Copy content Toggle raw display
$r_{ 2 }$ $=$ \( 13 + 13\cdot 19 + 6\cdot 19^{2} + 11\cdot 19^{4} +O(19^{5})\) Copy content Toggle raw display
$r_{ 3 }$ $=$ \( 12 a + 15 + 4 a\cdot 19 + \left(18 a + 2\right)\cdot 19^{2} + \left(3 a + 12\right)\cdot 19^{3} + \left(7 a + 12\right)\cdot 19^{4} +O(19^{5})\) Copy content Toggle raw display
$r_{ 4 }$ $=$ \( 15 + 5\cdot 19 + 19^{2} + 9\cdot 19^{3} + 9\cdot 19^{4} +O(19^{5})\) Copy content Toggle raw display
$r_{ 5 }$ $=$ \( a + 12 + \left(8 a + 8\right)\cdot 19 + \left(14 a + 12\right)\cdot 19^{2} + \left(14 a + 18\right)\cdot 19^{3} + \left(9 a + 15\right)\cdot 19^{4} +O(19^{5})\) Copy content Toggle raw display
$r_{ 6 }$ $=$ \( 18 a + 13 + \left(10 a + 15\right)\cdot 19 + \left(4 a + 18\right)\cdot 19^{2} + \left(4 a + 18\right)\cdot 19^{3} + \left(9 a + 10\right)\cdot 19^{4} +O(19^{5})\) Copy content Toggle raw display

Generators of the action on the roots $r_1, \ldots, r_{ 6 }$

Cycle notation
$(2,6)(3,4)$
$(1,2)(3,6)(4,5)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 6 }$ Character valueComplex conjugation
$1$$1$$()$$2$
$1$$2$$(1,5)(2,4)(3,6)$$-2$
$3$$2$$(1,2)(3,6)(4,5)$$0$
$3$$2$$(1,3)(5,6)$$0$
$2$$3$$(1,4,3)(2,6,5)$$-1$
$2$$6$$(1,6,4,5,3,2)$$1$