Properties

Label 2.780.6t3.f.a
Dimension $2$
Group $D_{6}$
Conductor $780$
Root number $1$
Indicator $1$

Related objects

Downloads

Learn more

Basic invariants

Dimension: $2$
Group: $D_{6}$
Conductor: \(780\)\(\medspace = 2^{2} \cdot 3 \cdot 5 \cdot 13 \)
Frobenius-Schur indicator: $1$
Root number: $1$
Artin stem field: Galois closure of 6.0.1825200.1
Galois orbit size: $1$
Smallest permutation container: $D_{6}$
Parity: odd
Determinant: 1.195.2t1.a.a
Projective image: $S_3$
Projective stem field: Galois closure of 3.1.780.1

Defining polynomial

$f(x)$$=$ \( x^{6} - x^{5} + 2x^{4} + 11x^{3} - 4x^{2} + 5x + 25 \) Copy content Toggle raw display .

The roots of $f$ are computed in an extension of $\Q_{ 19 }$ to precision 6.

Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 19 }$: \( x^{2} + 18x + 2 \) Copy content Toggle raw display

Roots:
$r_{ 1 }$ $=$ \( 2 + 4\cdot 19 + 10\cdot 19^{2} + 19^{3} + 5\cdot 19^{4} + 6\cdot 19^{5} +O(19^{6})\) Copy content Toggle raw display
$r_{ 2 }$ $=$ \( 16 a + 8 + \left(7 a + 1\right)\cdot 19 + \left(18 a + 1\right)\cdot 19^{2} + \left(a + 7\right)\cdot 19^{3} + \left(6 a + 8\right)\cdot 19^{4} + \left(13 a + 5\right)\cdot 19^{5} +O(19^{6})\) Copy content Toggle raw display
$r_{ 3 }$ $=$ \( 14 + 19 + 14\cdot 19^{2} + 2\cdot 19^{3} + 18\cdot 19^{4} + 18\cdot 19^{5} +O(19^{6})\) Copy content Toggle raw display
$r_{ 4 }$ $=$ \( 14 a + 17 + \left(17 a + 16\right)\cdot 19 + \left(15 a + 10\right)\cdot 19^{2} + \left(4 a + 4\right)\cdot 19^{3} + \left(14 a + 11\right)\cdot 19^{4} + \left(13 a + 16\right)\cdot 19^{5} +O(19^{6})\) Copy content Toggle raw display
$r_{ 5 }$ $=$ \( 5 a + 12 + \left(a + 1\right)\cdot 19 + \left(3 a + 9\right)\cdot 19^{2} + \left(14 a + 12\right)\cdot 19^{3} + \left(4 a + 1\right)\cdot 19^{4} + \left(5 a + 16\right)\cdot 19^{5} +O(19^{6})\) Copy content Toggle raw display
$r_{ 6 }$ $=$ \( 3 a + 5 + \left(11 a + 12\right)\cdot 19 + 11\cdot 19^{2} + \left(17 a + 9\right)\cdot 19^{3} + \left(12 a + 12\right)\cdot 19^{4} + \left(5 a + 12\right)\cdot 19^{5} +O(19^{6})\) Copy content Toggle raw display

Generators of the action on the roots $r_1, \ldots, r_{ 6 }$

Cycle notation
$(2,6)(4,5)$
$(1,2)(3,5)(4,6)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 6 }$ Character valueComplex conjugation
$1$$1$$()$$2$
$1$$2$$(1,3)(2,5)(4,6)$$-2$
$3$$2$$(1,2)(3,5)(4,6)$$0$
$3$$2$$(1,4)(3,6)$$0$
$2$$3$$(1,5,4)(2,6,3)$$-1$
$2$$6$$(1,6,5,3,4,2)$$1$