Basic invariants
Dimension: | $2$ |
Group: | $D_{6}$ |
Conductor: | \(780\)\(\medspace = 2^{2} \cdot 3 \cdot 5 \cdot 13 \) |
Frobenius-Schur indicator: | $1$ |
Root number: | $1$ |
Artin stem field: | Galois closure of 6.2.3042000.1 |
Galois orbit size: | $1$ |
Smallest permutation container: | $D_{6}$ |
Parity: | odd |
Determinant: | 1.195.2t1.a.a |
Projective image: | $S_3$ |
Projective stem field: | Galois closure of 3.1.780.1 |
Defining polynomial
$f(x)$ | $=$ |
\( x^{6} - x^{5} - 2x^{4} - 7x^{3} - 16x^{2} - 15x - 5 \)
|
The roots of $f$ are computed in an extension of $\Q_{ 19 }$ to precision 7.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 19 }$:
\( x^{2} + 18x + 2 \)
Roots:
$r_{ 1 }$ | $=$ |
\( 15 a + 14 + \left(8 a + 15\right)\cdot 19 + \left(12 a + 15\right)\cdot 19^{2} + \left(12 a + 3\right)\cdot 19^{3} + 14\cdot 19^{4} + \left(17 a + 9\right)\cdot 19^{5} + \left(13 a + 11\right)\cdot 19^{6} +O(19^{7})\)
|
$r_{ 2 }$ | $=$ |
\( 13 a + 12 + 18 a\cdot 19 + \left(9 a + 3\right)\cdot 19^{2} + \left(15 a + 10\right)\cdot 19^{3} + \left(8 a + 2\right)\cdot 19^{4} + \left(17 a + 3\right)\cdot 19^{5} + \left(11 a + 3\right)\cdot 19^{6} +O(19^{7})\)
|
$r_{ 3 }$ | $=$ |
\( 6 a + 6 + 6\cdot 19 + \left(9 a + 13\right)\cdot 19^{2} + \left(3 a + 15\right)\cdot 19^{3} + \left(10 a + 14\right)\cdot 19^{4} + \left(a + 11\right)\cdot 19^{5} + \left(7 a + 16\right)\cdot 19^{6} +O(19^{7})\)
|
$r_{ 4 }$ | $=$ |
\( 6 + 14\cdot 19 + 12\cdot 19^{2} + 7\cdot 19^{3} + 9\cdot 19^{4} + 17\cdot 19^{5} + 4\cdot 19^{6} +O(19^{7})\)
|
$r_{ 5 }$ | $=$ |
\( 4 a + 10 + \left(10 a + 9\right)\cdot 19 + 6 a\cdot 19^{2} + \left(6 a + 4\right)\cdot 19^{3} + \left(18 a + 2\right)\cdot 19^{4} + \left(a + 7\right)\cdot 19^{5} + \left(5 a + 8\right)\cdot 19^{6} +O(19^{7})\)
|
$r_{ 6 }$ | $=$ |
\( 10 + 10\cdot 19 + 11\cdot 19^{2} + 15\cdot 19^{3} + 13\cdot 19^{4} + 7\cdot 19^{5} + 12\cdot 19^{6} +O(19^{7})\)
|
Generators of the action on the roots $r_1, \ldots, r_{ 6 }$
Cycle notation |
Character values on conjugacy classes
Size | Order | Action on $r_1, \ldots, r_{ 6 }$ | Character value | Complex conjugation |
$1$ | $1$ | $()$ | $2$ | |
$1$ | $2$ | $(1,3)(2,5)(4,6)$ | $-2$ | |
$3$ | $2$ | $(1,2)(3,5)(4,6)$ | $0$ | |
$3$ | $2$ | $(1,6)(3,4)$ | $0$ | ✓ |
$2$ | $3$ | $(1,5,6)(2,4,3)$ | $-1$ | |
$2$ | $6$ | $(1,4,5,3,6,2)$ | $1$ |