Properties

Label 2.780.6t3.a.a
Dimension $2$
Group $D_{6}$
Conductor $780$
Root number $1$
Indicator $1$

Related objects

Downloads

Learn more

Basic invariants

Dimension: $2$
Group: $D_{6}$
Conductor: \(780\)\(\medspace = 2^{2} \cdot 3 \cdot 5 \cdot 13 \)
Frobenius-Schur indicator: $1$
Root number: $1$
Artin stem field: Galois closure of 6.2.3042000.1
Galois orbit size: $1$
Smallest permutation container: $D_{6}$
Parity: odd
Determinant: 1.195.2t1.a.a
Projective image: $S_3$
Projective stem field: Galois closure of 3.1.780.1

Defining polynomial

$f(x)$$=$ \( x^{6} - x^{5} - 2x^{4} - 7x^{3} - 16x^{2} - 15x - 5 \) Copy content Toggle raw display .

The roots of $f$ are computed in an extension of $\Q_{ 19 }$ to precision 7.

Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 19 }$: \( x^{2} + 18x + 2 \) Copy content Toggle raw display

Roots:
$r_{ 1 }$ $=$ \( 15 a + 14 + \left(8 a + 15\right)\cdot 19 + \left(12 a + 15\right)\cdot 19^{2} + \left(12 a + 3\right)\cdot 19^{3} + 14\cdot 19^{4} + \left(17 a + 9\right)\cdot 19^{5} + \left(13 a + 11\right)\cdot 19^{6} +O(19^{7})\) Copy content Toggle raw display
$r_{ 2 }$ $=$ \( 13 a + 12 + 18 a\cdot 19 + \left(9 a + 3\right)\cdot 19^{2} + \left(15 a + 10\right)\cdot 19^{3} + \left(8 a + 2\right)\cdot 19^{4} + \left(17 a + 3\right)\cdot 19^{5} + \left(11 a + 3\right)\cdot 19^{6} +O(19^{7})\) Copy content Toggle raw display
$r_{ 3 }$ $=$ \( 6 a + 6 + 6\cdot 19 + \left(9 a + 13\right)\cdot 19^{2} + \left(3 a + 15\right)\cdot 19^{3} + \left(10 a + 14\right)\cdot 19^{4} + \left(a + 11\right)\cdot 19^{5} + \left(7 a + 16\right)\cdot 19^{6} +O(19^{7})\) Copy content Toggle raw display
$r_{ 4 }$ $=$ \( 6 + 14\cdot 19 + 12\cdot 19^{2} + 7\cdot 19^{3} + 9\cdot 19^{4} + 17\cdot 19^{5} + 4\cdot 19^{6} +O(19^{7})\) Copy content Toggle raw display
$r_{ 5 }$ $=$ \( 4 a + 10 + \left(10 a + 9\right)\cdot 19 + 6 a\cdot 19^{2} + \left(6 a + 4\right)\cdot 19^{3} + \left(18 a + 2\right)\cdot 19^{4} + \left(a + 7\right)\cdot 19^{5} + \left(5 a + 8\right)\cdot 19^{6} +O(19^{7})\) Copy content Toggle raw display
$r_{ 6 }$ $=$ \( 10 + 10\cdot 19 + 11\cdot 19^{2} + 15\cdot 19^{3} + 13\cdot 19^{4} + 7\cdot 19^{5} + 12\cdot 19^{6} +O(19^{7})\) Copy content Toggle raw display

Generators of the action on the roots $r_1, \ldots, r_{ 6 }$

Cycle notation
$(1,2)(3,5)(4,6)$
$(2,4)(5,6)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 6 }$ Character valueComplex conjugation
$1$$1$$()$$2$
$1$$2$$(1,3)(2,5)(4,6)$$-2$
$3$$2$$(1,2)(3,5)(4,6)$$0$
$3$$2$$(1,6)(3,4)$$0$
$2$$3$$(1,5,6)(2,4,3)$$-1$
$2$$6$$(1,4,5,3,6,2)$$1$