Properties

Label 2.756.3t2.b.a
Dimension $2$
Group $S_3$
Conductor $756$
Root number $1$
Indicator $1$

Related objects

Downloads

Learn more

Basic invariants

Dimension: $2$
Group: $S_3$
Conductor: \(756\)\(\medspace = 2^{2} \cdot 3^{3} \cdot 7 \)
Frobenius-Schur indicator: $1$
Root number: $1$
Artin stem field: Galois closure of 3.1.756.1
Galois orbit size: $1$
Smallest permutation container: $S_3$
Parity: odd
Determinant: 1.84.2t1.a.a
Projective image: $S_3$
Projective stem field: Galois closure of 3.1.756.1

Defining polynomial

$f(x)$$=$ \( x^{3} - 6x - 12 \) Copy content Toggle raw display .

The roots of $f$ are computed in $\Q_{ 17 }$ to precision 5.

Roots:
$r_{ 1 }$ $=$ \( 1 + 11\cdot 17 + 7\cdot 17^{2} + 15\cdot 17^{3} + 14\cdot 17^{4} +O(17^{5})\) Copy content Toggle raw display
$r_{ 2 }$ $=$ \( 7 + 10\cdot 17^{2} + 14\cdot 17^{3} + 8\cdot 17^{4} +O(17^{5})\) Copy content Toggle raw display
$r_{ 3 }$ $=$ \( 9 + 5\cdot 17 + 16\cdot 17^{2} + 3\cdot 17^{3} + 10\cdot 17^{4} +O(17^{5})\) Copy content Toggle raw display

Generators of the action on the roots $ r_{ 1 }, r_{ 2 }, r_{ 3 } $

Cycle notation
$(1,2,3)$
$(1,2)$

Character values on conjugacy classes

SizeOrderAction on $ r_{ 1 }, r_{ 2 }, r_{ 3 } $ Character valueComplex conjugation
$1$$1$$()$$2$
$3$$2$$(1,2)$$0$
$2$$3$$(1,2,3)$$-1$