Properties

Label 2.755.6t3.b
Dimension $2$
Group $D_{6}$
Conductor $755$
Indicator $1$

Related objects

Downloads

Learn more

Basic invariants

Dimension:$2$
Group:$D_{6}$
Conductor:\(755\)\(\medspace = 5 \cdot 151 \)
Frobenius-Schur indicator: $1$
Root number: $1$
Artin number field: Galois closure of 6.2.2850125.1
Galois orbit size: $1$
Smallest permutation container: $D_{6}$
Parity: odd
Projective image: $S_3$
Projective field: Galois closure of 3.1.755.1

Galois action

Roots of defining polynomial

The roots of $f$ are computed in an extension of $\Q_{ 41 }$ to precision 6.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 41 }$: \( x^{2} + 38x + 6 \) Copy content Toggle raw display
Roots:
$r_{ 1 }$ $=$ \( 29 + 24\cdot 41 + 41^{2} + 20\cdot 41^{3} + 6\cdot 41^{4} + 15\cdot 41^{5} +O(41^{6})\) Copy content Toggle raw display
$r_{ 2 }$ $=$ \( 36 a + 19 + \left(29 a + 15\right)\cdot 41 + \left(24 a + 30\right)\cdot 41^{2} + \left(14 a + 15\right)\cdot 41^{3} + \left(3 a + 32\right)\cdot 41^{4} + \left(5 a + 10\right)\cdot 41^{5} +O(41^{6})\) Copy content Toggle raw display
$r_{ 3 }$ $=$ \( 36 a + 38 + \left(29 a + 12\right)\cdot 41 + \left(24 a + 7\right)\cdot 41^{2} + \left(14 a + 6\right)\cdot 41^{3} + \left(3 a + 13\right)\cdot 41^{4} + \left(5 a + 18\right)\cdot 41^{5} +O(41^{6})\) Copy content Toggle raw display
$r_{ 4 }$ $=$ \( 5 a + 4 + \left(11 a + 28\right)\cdot 41 + \left(16 a + 33\right)\cdot 41^{2} + \left(26 a + 34\right)\cdot 41^{3} + \left(37 a + 27\right)\cdot 41^{4} + \left(35 a + 22\right)\cdot 41^{5} +O(41^{6})\) Copy content Toggle raw display
$r_{ 5 }$ $=$ \( 13 + 16\cdot 41 + 39\cdot 41^{2} + 20\cdot 41^{3} + 34\cdot 41^{4} + 25\cdot 41^{5} +O(41^{6})\) Copy content Toggle raw display
$r_{ 6 }$ $=$ \( 5 a + 23 + \left(11 a + 25\right)\cdot 41 + \left(16 a + 10\right)\cdot 41^{2} + \left(26 a + 25\right)\cdot 41^{3} + \left(37 a + 8\right)\cdot 41^{4} + \left(35 a + 30\right)\cdot 41^{5} +O(41^{6})\) Copy content Toggle raw display

Generators of the action on the roots $r_1, \ldots, r_{ 6 }$

Cycle notation
$(1,2)(3,4)(5,6)$
$(2,4)(3,6)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 6 }$ Character values
$c1$
$1$ $1$ $()$ $2$
$1$ $2$ $(1,5)(2,6)(3,4)$ $-2$
$3$ $2$ $(1,2)(3,4)(5,6)$ $0$
$3$ $2$ $(1,3)(4,5)$ $0$
$2$ $3$ $(1,6,3)(2,4,5)$ $-1$
$2$ $6$ $(1,4,6,5,3,2)$ $1$
The blue line marks the conjugacy class containing complex conjugation.