Basic invariants
| Dimension: | $2$ |
| Group: | $S_3\times C_3$ |
| Conductor: | \(567\)\(\medspace = 3^{4} \cdot 7 \) |
| Artin stem field: | Galois closure of 9.3.14765025303.1 |
| Galois orbit size: | $2$ |
| Smallest permutation container: | $S_3\times C_3$ |
| Parity: | odd |
| Determinant: | 1.63.6t1.c.b |
| Projective image: | $S_3$ |
| Projective stem field: | Galois closure of 3.1.567.1 |
Defining polynomial
| $f(x)$ | $=$ |
\( x^{9} + 9x^{7} - 6x^{6} + 18x^{5} - 18x^{4} + 12x^{3} - 9x^{2} + 1 \)
|
The roots of $f$ are computed in an extension of $\Q_{ 11 }$ to precision 9.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 11 }$:
\( x^{3} + 2x + 9 \)
Roots:
| $r_{ 1 }$ | $=$ |
\( 7 a^{2} + 10 a + 8 + \left(3 a^{2} + 3 a + 7\right)\cdot 11 + \left(4 a^{2} + 2 a + 4\right)\cdot 11^{2} + \left(7 a^{2} + 4 a\right)\cdot 11^{3} + \left(5 a + 6\right)\cdot 11^{4} + \left(5 a^{2} + 10 a + 6\right)\cdot 11^{5} + \left(a^{2} + 6 a + 7\right)\cdot 11^{6} + \left(6 a^{2} + 7 a + 10\right)\cdot 11^{7} + \left(6 a + 6\right)\cdot 11^{8} +O(11^{9})\)
|
| $r_{ 2 }$ | $=$ |
\( 6 a^{2} + 9 + \left(4 a + 9\right)\cdot 11 + \left(10 a^{2} + 2 a + 3\right)\cdot 11^{2} + \left(a^{2} + 2 a + 1\right)\cdot 11^{3} + \left(6 a + 2\right)\cdot 11^{4} + \left(a^{2} + 10\right)\cdot 11^{5} + \left(a^{2} + 6 a + 2\right)\cdot 11^{6} + \left(6 a^{2} + 4 a + 2\right)\cdot 11^{7} + \left(5 a^{2} + 6 a + 6\right)\cdot 11^{8} +O(11^{9})\)
|
| $r_{ 3 }$ | $=$ |
\( 4 a^{2} + 6 a + 2 + \left(4 a^{2} + 10 a + 1\right)\cdot 11 + \left(10 a^{2} + 8 a + 6\right)\cdot 11^{2} + \left(10 a^{2} + 10\right)\cdot 11^{3} + \left(5 a + 8\right)\cdot 11^{4} + \left(3 a^{2} + 2\right)\cdot 11^{5} + \left(10 a^{2} + a + 10\right)\cdot 11^{6} + \left(5 a^{2} + a + 3\right)\cdot 11^{7} + \left(a^{2} + 7 a + 4\right)\cdot 11^{8} +O(11^{9})\)
|
| $r_{ 4 }$ | $=$ |
\( 9 a^{2} + 5 a + 5 + \left(4 a^{2} + 5 a + 5\right)\cdot 11 + \left(a^{2} + a + 1\right)\cdot 11^{2} + \left(2 a^{2} + 6 a + 6\right)\cdot 11^{3} + \left(10 a^{2} + 3 a + 6\right)\cdot 11^{4} + \left(6 a^{2} + 9 a\right)\cdot 11^{5} + \left(10 a^{2} + 3 a + 7\right)\cdot 11^{6} + \left(2 a^{2} + 10 a + 3\right)\cdot 11^{7} + \left(8 a^{2} + 7 a + 2\right)\cdot 11^{8} +O(11^{9})\)
|
| $r_{ 5 }$ | $=$ |
\( 7 a^{2} + 8 + \left(8 a^{2} + a + 10\right)\cdot 11 + \left(a^{2} + 8 a + 4\right)\cdot 11^{2} + \left(4 a + 5\right)\cdot 11^{3} + \left(2 a + 1\right)\cdot 11^{4} + \left(9 a^{2} + 9 a + 8\right)\cdot 11^{5} + \left(8 a^{2} + 9 a + 2\right)\cdot 11^{6} + \left(2 a^{2} + 6 a + 6\right)\cdot 11^{7} + \left(4 a^{2} + 8 a + 4\right)\cdot 11^{8} +O(11^{9})\)
|
| $r_{ 6 }$ | $=$ |
\( 10 a^{2} + 4 a + 7 + \left(7 a^{2} + 5 a + 8\right)\cdot 11 + \left(6 a^{2} + a + 6\right)\cdot 11^{2} + \left(7 a^{2} + 8 a + 1\right)\cdot 11^{3} + \left(10 a^{2} + 2 a + 5\right)\cdot 11^{4} + \left(10 a^{2} + 8 a + 1\right)\cdot 11^{5} + \left(10 a^{2} + 4 a + 5\right)\cdot 11^{6} + \left(2 a^{2} + 2 a + 5\right)\cdot 11^{7} + \left(3 a^{2} + 8 a + 10\right)\cdot 11^{8} +O(11^{9})\)
|
| $r_{ 7 }$ | $=$ |
\( 6 a^{2} + 7 a + 9 + \left(2 a^{2} + a + 8\right)\cdot 11 + \left(5 a^{2} + 7 a + 4\right)\cdot 11^{2} + \left(a^{2} + 4\right)\cdot 11^{3} + \left(2 a + 9\right)\cdot 11^{4} + \left(10 a^{2} + 2 a + 3\right)\cdot 11^{5} + \left(9 a^{2} + 7\right)\cdot 11^{6} + \left(a^{2} + 4 a + 7\right)\cdot 11^{7} + \left(2 a^{2} + 7 a + 1\right)\cdot 11^{8} +O(11^{9})\)
|
| $r_{ 8 }$ | $=$ |
\( 9 a^{2} + 5 + \left(a^{2} + 6 a + 1\right)\cdot 11 + \left(10 a^{2} + 2\right)\cdot 11^{2} + \left(8 a^{2} + 4 a + 4\right)\cdot 11^{3} + \left(10 a^{2} + 2 a + 7\right)\cdot 11^{4} + \left(a + 3\right)\cdot 11^{5} + \left(a^{2} + 6 a + 5\right)\cdot 11^{6} + \left(2 a^{2} + 10 a + 2\right)\cdot 11^{7} + \left(a^{2} + 6 a\right)\cdot 11^{8} +O(11^{9})\)
|
| $r_{ 9 }$ | $=$ |
\( 8 a^{2} + a + 2 + \left(9 a^{2} + 6 a + 1\right)\cdot 11 + \left(4 a^{2} + 9\right)\cdot 11^{2} + \left(3 a^{2} + 2 a + 9\right)\cdot 11^{3} + \left(10 a^{2} + 3 a + 7\right)\cdot 11^{4} + \left(7 a^{2} + 2 a + 6\right)\cdot 11^{5} + \left(5 a + 6\right)\cdot 11^{6} + \left(2 a^{2} + 7 a + 1\right)\cdot 11^{7} + \left(6 a^{2} + 6 a + 7\right)\cdot 11^{8} +O(11^{9})\)
|
Generators of the action on the roots $r_1, \ldots, r_{ 9 }$
| Cycle notation |
Character values on conjugacy classes
| Size | Order | Action on $r_1, \ldots, r_{ 9 }$ | Character value | Complex conjugation |
| $1$ | $1$ | $()$ | $2$ | |
| $3$ | $2$ | $(1,7)(2,8)(3,9)$ | $0$ | ✓ |
| $1$ | $3$ | $(1,3,2)(4,6,5)(7,9,8)$ | $-2 \zeta_{3} - 2$ | |
| $1$ | $3$ | $(1,2,3)(4,5,6)(7,8,9)$ | $2 \zeta_{3}$ | |
| $2$ | $3$ | $(1,4,7)(2,5,8)(3,6,9)$ | $-1$ | |
| $2$ | $3$ | $(1,6,8)(2,4,9)(3,5,7)$ | $\zeta_{3} + 1$ | |
| $2$ | $3$ | $(1,8,6)(2,9,4)(3,7,5)$ | $-\zeta_{3}$ | |
| $3$ | $6$ | $(1,9,2,7,3,8)(4,6,5)$ | $0$ | |
| $3$ | $6$ | $(1,8,3,7,2,9)(4,5,6)$ | $0$ |