Properties

Label 2.468.8t11.a.a
Dimension $2$
Group $Q_8:C_2$
Conductor $468$
Root number not computed
Indicator $0$

Related objects

Downloads

Learn more

Basic invariants

Dimension: $2$
Group: $Q_8:C_2$
Conductor: \(468\)\(\medspace = 2^{2} \cdot 3^{2} \cdot 13 \)
Artin stem field: Galois closure of 8.0.31539456.5
Galois orbit size: $2$
Smallest permutation container: $Q_8:C_2$
Parity: odd
Determinant: 1.52.2t1.a.a
Projective image: $C_2^2$
Projective field: Galois closure of \(\Q(i, \sqrt{39})\)

Defining polynomial

$f(x)$$=$ \( x^{8} - 2x^{7} - x^{6} - 2x^{5} + 10x^{4} + 8x^{3} - 22x^{2} - 4x + 13 \) Copy content Toggle raw display .

The roots of $f$ are computed in $\Q_{ 61 }$ to precision 5.

Roots:
$r_{ 1 }$ $=$ \( 4 + 4\cdot 61 + 41\cdot 61^{2} + 9\cdot 61^{3} + 14\cdot 61^{4} +O(61^{5})\) Copy content Toggle raw display
$r_{ 2 }$ $=$ \( 17 + 3\cdot 61 + 57\cdot 61^{2} + 16\cdot 61^{3} + 17\cdot 61^{4} +O(61^{5})\) Copy content Toggle raw display
$r_{ 3 }$ $=$ \( 19 + 29\cdot 61 + 36\cdot 61^{2} + 38\cdot 61^{3} + 17\cdot 61^{4} +O(61^{5})\) Copy content Toggle raw display
$r_{ 4 }$ $=$ \( 20 + 19\cdot 61 + 58\cdot 61^{2} + 49\cdot 61^{3} + 59\cdot 61^{4} +O(61^{5})\) Copy content Toggle raw display
$r_{ 5 }$ $=$ \( 21 + 34\cdot 61 + 26\cdot 61^{2} + 45\cdot 61^{3} + 30\cdot 61^{4} +O(61^{5})\) Copy content Toggle raw display
$r_{ 6 }$ $=$ \( 25 + 10\cdot 61 + 6\cdot 61^{2} + 21\cdot 61^{3} + 41\cdot 61^{4} +O(61^{5})\) Copy content Toggle raw display
$r_{ 7 }$ $=$ \( 34 + 34\cdot 61 + 20\cdot 61^{2} + 40\cdot 61^{3} + 56\cdot 61^{4} +O(61^{5})\) Copy content Toggle raw display
$r_{ 8 }$ $=$ \( 45 + 47\cdot 61 + 58\cdot 61^{2} + 21\cdot 61^{3} + 6\cdot 61^{4} +O(61^{5})\) Copy content Toggle raw display

Generators of the action on the roots $r_1, \ldots, r_{ 8 }$

Cycle notation
$(1,2)(3,6)(4,5)(7,8)$
$(2,4)(3,8)$
$(1,5)(2,4)(3,8)(6,7)$
$(1,3)(2,7)(4,6)(5,8)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 8 }$ Character valueComplex conjugation
$1$$1$$()$$2$
$1$$2$$(1,5)(2,4)(3,8)(6,7)$$-2$
$2$$2$$(1,3)(2,7)(4,6)(5,8)$$0$
$2$$2$$(1,2)(3,6)(4,5)(7,8)$$0$
$2$$2$$(2,4)(3,8)$$0$
$1$$4$$(1,6,5,7)(2,3,4,8)$$-2 \zeta_{4}$
$1$$4$$(1,7,5,6)(2,8,4,3)$$2 \zeta_{4}$
$2$$4$$(1,8,5,3)(2,7,4,6)$$0$
$2$$4$$(1,6,5,7)(2,8,4,3)$$0$
$2$$4$$(1,4,5,2)(3,6,8,7)$$0$