Properties

Label 2.465.6t5.c.b
Dimension $2$
Group $S_3\times C_3$
Conductor $465$
Root number not computed
Indicator $0$

Related objects

Downloads

Learn more

Basic invariants

Dimension: $2$
Group: $S_3\times C_3$
Conductor: \(465\)\(\medspace = 3 \cdot 5 \cdot 31 \)
Artin stem field: Galois closure of 6.0.3243375.1
Galois orbit size: $2$
Smallest permutation container: $S_3\times C_3$
Parity: odd
Determinant: 1.465.6t1.b.b
Projective image: $S_3$
Projective stem field: Galois closure of 3.1.14415.1

Defining polynomial

$f(x)$$=$ \( x^{6} - x^{5} - x^{4} - 3x^{3} + 9x^{2} - 5x + 1 \) Copy content Toggle raw display .

The roots of $f$ are computed in an extension of $\Q_{ 29 }$ to precision 5.

Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 29 }$: \( x^{2} + 24x + 2 \) Copy content Toggle raw display

Roots:
$r_{ 1 }$ $=$ \( 9 a + 12 + \left(4 a + 6\right)\cdot 29 + \left(7 a + 26\right)\cdot 29^{2} + \left(10 a + 3\right)\cdot 29^{3} + \left(11 a + 5\right)\cdot 29^{4} +O(29^{5})\) Copy content Toggle raw display
$r_{ 2 }$ $=$ \( 25 a + 7 + \left(a + 9\right)\cdot 29 + \left(12 a + 4\right)\cdot 29^{2} + \left(19 a + 21\right)\cdot 29^{3} + \left(23 a + 28\right)\cdot 29^{4} +O(29^{5})\) Copy content Toggle raw display
$r_{ 3 }$ $=$ \( 4 a + 17 + \left(9 a + 8\right)\cdot 29 + \left(17 a + 16\right)\cdot 29^{2} + \left(18 a + 17\right)\cdot 29^{3} + \left(12 a + 1\right)\cdot 29^{4} +O(29^{5})\) Copy content Toggle raw display
$r_{ 4 }$ $=$ \( 4 a + 16 + \left(27 a + 22\right)\cdot 29 + \left(16 a + 4\right)\cdot 29^{2} + \left(9 a + 19\right)\cdot 29^{3} + \left(5 a + 11\right)\cdot 29^{4} +O(29^{5})\) Copy content Toggle raw display
$r_{ 5 }$ $=$ \( 25 a + 8 + \left(19 a + 21\right)\cdot 29 + \left(11 a + 6\right)\cdot 29^{2} + \left(10 a + 6\right)\cdot 29^{3} + \left(16 a + 17\right)\cdot 29^{4} +O(29^{5})\) Copy content Toggle raw display
$r_{ 6 }$ $=$ \( 20 a + 28 + \left(24 a + 18\right)\cdot 29 + \left(21 a + 28\right)\cdot 29^{2} + \left(18 a + 18\right)\cdot 29^{3} + \left(17 a + 22\right)\cdot 29^{4} +O(29^{5})\) Copy content Toggle raw display

Generators of the action on the roots $r_1, \ldots, r_{ 6 }$

Cycle notation
$(1,6,3,5,2,4)$
$(4,5,6)$
$(1,2,3)(4,6,5)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 6 }$ Character valueComplex conjugation
$1$$1$$()$$2$
$3$$2$$(1,5)(2,6)(3,4)$$0$
$1$$3$$(1,3,2)(4,6,5)$$-2 \zeta_{3} - 2$
$1$$3$$(1,2,3)(4,5,6)$$2 \zeta_{3}$
$2$$3$$(1,2,3)(4,6,5)$$-1$
$2$$3$$(4,5,6)$$\zeta_{3} + 1$
$2$$3$$(4,6,5)$$-\zeta_{3}$
$3$$6$$(1,6,3,5,2,4)$$0$
$3$$6$$(1,4,2,5,3,6)$$0$