Properties

Label 2.3952.6t3.c
Dimension $2$
Group $D_{6}$
Conductor $3952$
Indicator $1$

Related objects

Downloads

Learn more

Basic invariants

Dimension:$2$
Group:$D_{6}$
Conductor:\(3952\)\(\medspace = 2^{4} \cdot 13 \cdot 19 \)
Frobenius-Schur indicator: $1$
Root number: $1$
Artin number field: Galois closure of 6.0.3904576.2
Galois orbit size: $1$
Smallest permutation container: $D_{6}$
Parity: odd
Projective image: $S_3$
Projective field: Galois closure of 3.1.247.1

Galois action

Roots of defining polynomial

The roots of $f$ are computed in an extension of $\Q_{ 29 }$ to precision 6.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 29 }$: \( x^{2} + 24x + 2 \) Copy content Toggle raw display
Roots:
$r_{ 1 }$ $=$ \( 6 + 10\cdot 29 + 10\cdot 29^{2} + 3\cdot 29^{3} + 6\cdot 29^{4} + 24\cdot 29^{5} +O(29^{6})\) Copy content Toggle raw display
$r_{ 2 }$ $=$ \( 12 a + 2 + \left(3 a + 17\right)\cdot 29 + \left(8 a + 15\right)\cdot 29^{2} + \left(16 a + 8\right)\cdot 29^{3} + \left(12 a + 23\right)\cdot 29^{4} + 24 a\cdot 29^{5} +O(29^{6})\) Copy content Toggle raw display
$r_{ 3 }$ $=$ \( 12 a + 25 + \left(3 a + 6\right)\cdot 29 + \left(8 a + 5\right)\cdot 29^{2} + \left(16 a + 5\right)\cdot 29^{3} + \left(12 a + 17\right)\cdot 29^{4} + \left(24 a + 5\right)\cdot 29^{5} +O(29^{6})\) Copy content Toggle raw display
$r_{ 4 }$ $=$ \( 23 + 18\cdot 29 + 18\cdot 29^{2} + 25\cdot 29^{3} + 22\cdot 29^{4} + 4\cdot 29^{5} +O(29^{6})\) Copy content Toggle raw display
$r_{ 5 }$ $=$ \( 17 a + 27 + \left(25 a + 11\right)\cdot 29 + \left(20 a + 13\right)\cdot 29^{2} + \left(12 a + 20\right)\cdot 29^{3} + \left(16 a + 5\right)\cdot 29^{4} + \left(4 a + 28\right)\cdot 29^{5} +O(29^{6})\) Copy content Toggle raw display
$r_{ 6 }$ $=$ \( 17 a + 4 + \left(25 a + 22\right)\cdot 29 + \left(20 a + 23\right)\cdot 29^{2} + \left(12 a + 23\right)\cdot 29^{3} + \left(16 a + 11\right)\cdot 29^{4} + \left(4 a + 23\right)\cdot 29^{5} +O(29^{6})\) Copy content Toggle raw display

Generators of the action on the roots $r_1, \ldots, r_{ 6 }$

Cycle notation
$(2,6)(3,5)$
$(1,2)(3,6)(4,5)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 6 }$ Character values
$c1$
$1$ $1$ $()$ $2$
$1$ $2$ $(1,4)(2,5)(3,6)$ $-2$
$3$ $2$ $(1,2)(3,6)(4,5)$ $0$
$3$ $2$ $(1,3)(4,6)$ $0$
$2$ $3$ $(1,5,3)(2,6,4)$ $-1$
$2$ $6$ $(1,6,5,4,3,2)$ $1$
The blue line marks the conjugacy class containing complex conjugation.