Properties

Label 2.3600.24t22.d.b
Dimension $2$
Group $\textrm{GL(2,3)}$
Conductor $3600$
Root number not computed
Indicator $0$

Related objects

Downloads

Learn more

Basic invariants

Dimension: $2$
Group: $\textrm{GL(2,3)}$
Conductor: \(3600\)\(\medspace = 2^{4} \cdot 3^{2} \cdot 5^{2} \)
Artin stem field: Galois closure of 8.2.139968000000.3
Galois orbit size: $2$
Smallest permutation container: 24T22
Parity: odd
Determinant: 1.3.2t1.a.a
Projective image: $S_4$
Projective stem field: Galois closure of 4.2.10800.2

Defining polynomial

$f(x)$$=$ \( x^{8} - 4x^{7} + 4x^{6} - 10x^{5} + 40x^{4} - 40x^{3} + 10x^{2} - 10x - 5 \) Copy content Toggle raw display .

The roots of $f$ are computed in an extension of $\Q_{ 41 }$ to precision 9.

Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 41 }$: \( x^{2} + 38x + 6 \) Copy content Toggle raw display

Roots:
$r_{ 1 }$ $=$ \( 27 a + 21 + \left(4 a + 18\right)\cdot 41 + \left(40 a + 13\right)\cdot 41^{2} + \left(36 a + 8\right)\cdot 41^{3} + \left(20 a + 12\right)\cdot 41^{4} + \left(34 a + 40\right)\cdot 41^{5} + \left(40 a + 3\right)\cdot 41^{6} + \left(13 a + 13\right)\cdot 41^{7} + \left(9 a + 4\right)\cdot 41^{8} +O(41^{9})\) Copy content Toggle raw display
$r_{ 2 }$ $=$ \( 12 a + 17 + \left(34 a + 12\right)\cdot 41 + \left(14 a + 17\right)\cdot 41^{2} + \left(34 a + 17\right)\cdot 41^{3} + \left(20 a + 11\right)\cdot 41^{4} + \left(27 a + 23\right)\cdot 41^{5} + \left(22 a + 13\right)\cdot 41^{6} + \left(24 a + 18\right)\cdot 41^{7} + \left(9 a + 11\right)\cdot 41^{8} +O(41^{9})\) Copy content Toggle raw display
$r_{ 3 }$ $=$ \( 29 a + 12 + \left(6 a + 21\right)\cdot 41 + \left(26 a + 27\right)\cdot 41^{2} + \left(6 a + 23\right)\cdot 41^{3} + \left(20 a + 39\right)\cdot 41^{4} + \left(13 a + 2\right)\cdot 41^{5} + \left(18 a + 13\right)\cdot 41^{6} + \left(16 a + 28\right)\cdot 41^{7} + \left(31 a + 15\right)\cdot 41^{8} +O(41^{9})\) Copy content Toggle raw display
$r_{ 4 }$ $=$ \( 6 a + 17 + \left(22 a + 9\right)\cdot 41 + \left(a + 29\right)\cdot 41^{2} + 17\cdot 41^{3} + \left(25 a + 5\right)\cdot 41^{4} + \left(34 a + 37\right)\cdot 41^{5} + \left(29 a + 38\right)\cdot 41^{6} + \left(19 a + 25\right)\cdot 41^{7} + \left(8 a + 15\right)\cdot 41^{8} +O(41^{9})\) Copy content Toggle raw display
$r_{ 5 }$ $=$ \( 26 + 25\cdot 41 + 28\cdot 41^{2} + 29\cdot 41^{3} + 4\cdot 41^{4} + 3\cdot 41^{5} + 30\cdot 41^{6} + 33\cdot 41^{7} + 8\cdot 41^{8} +O(41^{9})\) Copy content Toggle raw display
$r_{ 6 }$ $=$ \( 14 a + 20 + \left(36 a + 5\right)\cdot 41 + 6\cdot 41^{2} + \left(4 a + 38\right)\cdot 41^{3} + \left(20 a + 37\right)\cdot 41^{4} + \left(6 a + 40\right)\cdot 41^{5} + 9\cdot 41^{6} + \left(27 a + 14\right)\cdot 41^{7} + \left(31 a + 18\right)\cdot 41^{8} +O(41^{9})\) Copy content Toggle raw display
$r_{ 7 }$ $=$ \( 20 + 41 + 30\cdot 41^{2} + 12\cdot 41^{3} + 13\cdot 41^{4} + 23\cdot 41^{5} + 41^{6} + 16\cdot 41^{7} + 27\cdot 41^{8} +O(41^{9})\) Copy content Toggle raw display
$r_{ 8 }$ $=$ \( 35 a + 35 + \left(18 a + 28\right)\cdot 41 + \left(39 a + 11\right)\cdot 41^{2} + \left(40 a + 16\right)\cdot 41^{3} + \left(15 a + 39\right)\cdot 41^{4} + \left(6 a + 33\right)\cdot 41^{5} + \left(11 a + 11\right)\cdot 41^{6} + \left(21 a + 14\right)\cdot 41^{7} + \left(32 a + 21\right)\cdot 41^{8} +O(41^{9})\) Copy content Toggle raw display

Generators of the action on the roots $r_1, \ldots, r_{ 8 }$

Cycle notation
$(1,6,7)(4,8,5)$
$(1,4)(2,3)(5,7)(6,8)$
$(1,5,4,7)(2,8,3,6)$
$(1,5)(4,7)(6,8)$
$(1,6,4,8)(2,5,3,7)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 8 }$ Character valueComplex conjugation
$1$$1$$()$$2$
$1$$2$$(1,4)(2,3)(5,7)(6,8)$$-2$
$12$$2$$(1,5)(4,7)(6,8)$$0$
$8$$3$$(1,8,3)(2,4,6)$$-1$
$6$$4$$(1,5,4,7)(2,8,3,6)$$0$
$8$$6$$(1,2,8,4,3,6)(5,7)$$1$
$6$$8$$(1,3,7,8,4,2,5,6)$$\zeta_{8}^{3} + \zeta_{8}$
$6$$8$$(1,2,7,6,4,3,5,8)$$-\zeta_{8}^{3} - \zeta_{8}$