Properties

Label 2.3456.24t22.e.a
Dimension $2$
Group $\textrm{GL(2,3)}$
Conductor $3456$
Root number not computed
Indicator $0$

Related objects

Downloads

Learn more

Basic invariants

Dimension: $2$
Group: $\textrm{GL(2,3)}$
Conductor: \(3456\)\(\medspace = 2^{7} \cdot 3^{3} \)
Artin stem field: Galois closure of 8.2.9172942848.6
Galois orbit size: $2$
Smallest permutation container: 24T22
Parity: odd
Determinant: 1.3.2t1.a.a
Projective image: $S_4$
Projective stem field: Galois closure of 4.2.6912.2

Defining polynomial

$f(x)$$=$ \( x^{8} + 8x^{6} + 18x^{4} - 3 \) Copy content Toggle raw display .

The roots of $f$ are computed in an extension of $\Q_{ 29 }$ to precision 9.

Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 29 }$: \( x^{2} + 24x + 2 \) Copy content Toggle raw display

Roots:
$r_{ 1 }$ $=$ \( 24 a + 27 + \left(24 a + 7\right)\cdot 29 + \left(22 a + 13\right)\cdot 29^{2} + \left(27 a + 14\right)\cdot 29^{3} + \left(17 a + 12\right)\cdot 29^{4} + \left(9 a + 28\right)\cdot 29^{5} + \left(15 a + 9\right)\cdot 29^{6} + \left(10 a + 10\right)\cdot 29^{7} + \left(20 a + 12\right)\cdot 29^{8} +O(29^{9})\) Copy content Toggle raw display
$r_{ 2 }$ $=$ \( 18 a + 7 + \left(28 a + 14\right)\cdot 29 + \left(a + 19\right)\cdot 29^{2} + \left(23 a + 12\right)\cdot 29^{3} + \left(9 a + 15\right)\cdot 29^{4} + \left(23 a + 27\right)\cdot 29^{5} + \left(22 a + 17\right)\cdot 29^{6} + \left(8 a + 17\right)\cdot 29^{7} + 16 a\cdot 29^{8} +O(29^{9})\) Copy content Toggle raw display
$r_{ 3 }$ $=$ \( 18 a + 19 + \left(28 a + 5\right)\cdot 29 + \left(a + 28\right)\cdot 29^{2} + \left(23 a + 18\right)\cdot 29^{3} + \left(9 a + 16\right)\cdot 29^{4} + \left(23 a + 10\right)\cdot 29^{5} + \left(22 a + 7\right)\cdot 29^{6} + \left(8 a + 19\right)\cdot 29^{7} + \left(16 a + 13\right)\cdot 29^{8} +O(29^{9})\) Copy content Toggle raw display
$r_{ 4 }$ $=$ \( 24 + 6\cdot 29^{2} + 28\cdot 29^{3} + 17\cdot 29^{4} + 8\cdot 29^{5} + 8\cdot 29^{6} + 10\cdot 29^{7} + 24\cdot 29^{8} +O(29^{9})\) Copy content Toggle raw display
$r_{ 5 }$ $=$ \( 5 a + 2 + \left(4 a + 21\right)\cdot 29 + \left(6 a + 15\right)\cdot 29^{2} + \left(a + 14\right)\cdot 29^{3} + \left(11 a + 16\right)\cdot 29^{4} + 19 a\cdot 29^{5} + \left(13 a + 19\right)\cdot 29^{6} + \left(18 a + 18\right)\cdot 29^{7} + \left(8 a + 16\right)\cdot 29^{8} +O(29^{9})\) Copy content Toggle raw display
$r_{ 6 }$ $=$ \( 11 a + 22 + 14\cdot 29 + \left(27 a + 9\right)\cdot 29^{2} + \left(5 a + 16\right)\cdot 29^{3} + \left(19 a + 13\right)\cdot 29^{4} + \left(5 a + 1\right)\cdot 29^{5} + \left(6 a + 11\right)\cdot 29^{6} + \left(20 a + 11\right)\cdot 29^{7} + \left(12 a + 28\right)\cdot 29^{8} +O(29^{9})\) Copy content Toggle raw display
$r_{ 7 }$ $=$ \( 11 a + 10 + 23\cdot 29 + 27 a\cdot 29^{2} + \left(5 a + 10\right)\cdot 29^{3} + \left(19 a + 12\right)\cdot 29^{4} + \left(5 a + 18\right)\cdot 29^{5} + \left(6 a + 21\right)\cdot 29^{6} + \left(20 a + 9\right)\cdot 29^{7} + \left(12 a + 15\right)\cdot 29^{8} +O(29^{9})\) Copy content Toggle raw display
$r_{ 8 }$ $=$ \( 5 + 28\cdot 29 + 22\cdot 29^{2} + 11\cdot 29^{4} + 20\cdot 29^{5} + 20\cdot 29^{6} + 18\cdot 29^{7} + 4\cdot 29^{8} +O(29^{9})\) Copy content Toggle raw display

Generators of the action on the roots $r_1, \ldots, r_{ 8 }$

Cycle notation
$(1,5)(2,8)(4,6)$
$(1,8,5,4)(2,3,6,7)$
$(1,4,2)(5,8,6)$
$(1,5)(2,6)(3,7)(4,8)$
$(1,6,5,2)(3,4,7,8)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 8 }$ Character valueComplex conjugation
$1$$1$$()$$2$
$1$$2$$(1,5)(2,6)(3,7)(4,8)$$-2$
$12$$2$$(1,5)(2,8)(4,6)$$0$
$8$$3$$(1,4,2)(5,8,6)$$-1$
$6$$4$$(1,6,5,2)(3,4,7,8)$$0$
$8$$6$$(1,7,8,5,3,4)(2,6)$$1$
$6$$8$$(1,2,3,4,5,6,7,8)$$-\zeta_{8}^{3} - \zeta_{8}$
$6$$8$$(1,6,3,8,5,2,7,4)$$\zeta_{8}^{3} + \zeta_{8}$