Basic invariants
Dimension: | $2$ |
Group: | $S_3 \times C_4$ |
Conductor: | \(3400\)\(\medspace = 2^{3} \cdot 5^{2} \cdot 17 \) |
Artin stem field: | Galois closure of 12.4.42762752000000000.1 |
Galois orbit size: | $2$ |
Smallest permutation container: | $S_3 \times C_4$ |
Parity: | odd |
Determinant: | 1.136.2t1.b.a |
Projective image: | $S_3$ |
Projective stem field: | Galois closure of 3.1.680.1 |
Defining polynomial
$f(x)$ | $=$ |
\( x^{12} - 4 x^{11} + 10 x^{9} + 21 x^{8} - 70 x^{7} - 31 x^{6} + 170 x^{5} + 121 x^{4} - 610 x^{3} + \cdots + 11 \)
|
The roots of $f$ are computed in an extension of $\Q_{ 23 }$ to precision 7.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 23 }$:
\( x^{4} + 3x^{2} + 19x + 5 \)
Roots:
$r_{ 1 }$ | $=$ |
\( 21 a^{3} + 9 a^{2} + 12 a + 17 + \left(20 a^{3} + 8 a^{2} + a + 10\right)\cdot 23 + \left(15 a^{3} + 3 a^{2} + 2 a + 16\right)\cdot 23^{2} + \left(15 a^{3} + 17 a^{2} + 20 a + 11\right)\cdot 23^{3} + \left(14 a^{3} + 3 a^{2} + 18 a + 13\right)\cdot 23^{4} + \left(a^{3} + 22 a^{2} + 10 a + 2\right)\cdot 23^{5} + \left(7 a^{3} + 18 a^{2} + 6 a + 1\right)\cdot 23^{6} +O(23^{7})\)
|
$r_{ 2 }$ | $=$ |
\( 11 a^{3} + 10 a^{2} + 6 a + 10 + \left(4 a^{3} + 18 a^{2} + 12 a + 16\right)\cdot 23 + \left(18 a^{3} + 17 a^{2} + 7 a + 20\right)\cdot 23^{2} + \left(17 a^{3} + 7 a^{2} + 16 a + 12\right)\cdot 23^{3} + \left(2 a^{3} + 8 a^{2} + 5 a + 6\right)\cdot 23^{4} + \left(10 a^{3} + 15 a^{2} + 4 a + 2\right)\cdot 23^{5} + \left(20 a^{3} + 2 a + 16\right)\cdot 23^{6} +O(23^{7})\)
|
$r_{ 3 }$ | $=$ |
\( 4 a^{3} + 11 a^{2} + 7 a + 3 + \left(13 a^{3} + 7 a^{2} + 6 a + 16\right)\cdot 23 + \left(20 a^{3} + 5 a^{2} + 16 a + 22\right)\cdot 23^{2} + \left(2 a^{3} + 19 a^{2} + 14 a + 7\right)\cdot 23^{3} + \left(a^{3} + 11 a^{2} + 18 a + 10\right)\cdot 23^{4} + \left(5 a^{3} + 2 a^{2} + 6 a + 1\right)\cdot 23^{5} + \left(21 a^{3} + 5 a^{2} + 2 a + 7\right)\cdot 23^{6} +O(23^{7})\)
|
$r_{ 4 }$ | $=$ |
\( 16 a^{3} + 22 a^{2} + 7 a + 17 + \left(11 a^{3} + 8 a^{2} + 17 a + 6\right)\cdot 23 + \left(2 a^{3} + 22 a^{2} + 21 a + 9\right)\cdot 23^{2} + \left(5 a^{3} + 19 a^{2} + 19 a + 20\right)\cdot 23^{3} + \left(a^{3} + 17 a^{2} + 15 a + 3\right)\cdot 23^{4} + \left(13 a^{3} + 21 a^{2} + 17 a + 15\right)\cdot 23^{5} + \left(22 a^{3} + 2 a + 16\right)\cdot 23^{6} +O(23^{7})\)
|
$r_{ 5 }$ | $=$ |
\( 13 a^{3} + 13 a^{2} + 5 a + 1 + \left(7 a^{3} + 17 a^{2} + 6 a + 1\right)\cdot 23 + \left(19 a^{3} + 13 a^{2} + 9 a + 6\right)\cdot 23^{2} + \left(8 a^{3} + 17 a^{2} + 17 a + 18\right)\cdot 23^{3} + \left(15 a^{3} + 5 a^{2} + 17 a + 20\right)\cdot 23^{4} + \left(6 a^{3} + 19 a^{2} + 8 a\right)\cdot 23^{5} + \left(17 a^{3} + 6 a^{2} + 12 a + 2\right)\cdot 23^{6} +O(23^{7})\)
|
$r_{ 6 }$ | $=$ |
\( 7 a^{3} + 13 a^{2} + 20 a + 15 + \left(8 a^{3} + a^{2} + 2 a + 22\right)\cdot 23 + \left(10 a^{3} + 15 a^{2} + 3 a + 19\right)\cdot 23^{2} + \left(4 a^{3} + 4 a^{2} + 19 a + 7\right)\cdot 23^{3} + \left(17 a^{3} + 3 a^{2} + 11 a + 20\right)\cdot 23^{4} + \left(21 a^{3} + 7 a^{2} + 11 a + 11\right)\cdot 23^{5} + \left(14 a^{3} + 10 a^{2} + 8 a + 15\right)\cdot 23^{6} +O(23^{7})\)
|
$r_{ 7 }$ | $=$ |
\( 5 a^{3} + 19 a^{2} + 11 a + 12 + \left(16 a^{3} + 2 a^{2} + 20 a + 6\right)\cdot 23 + \left(5 a^{3} + 19 a^{2} + 9 a + 21\right)\cdot 23^{2} + \left(6 a^{3} + 13 a^{2} + 21 a + 18\right)\cdot 23^{3} + \left(17 a^{3} + 4 a + 10\right)\cdot 23^{4} + \left(9 a^{3} + 14 a^{2} + 22\right)\cdot 23^{5} + \left(a^{3} + 21 a^{2} + 5 a + 19\right)\cdot 23^{6} +O(23^{7})\)
|
$r_{ 8 }$ | $=$ |
\( 2 a^{3} + a^{2} + 5 a + 17 + \left(11 a^{3} + 6 a^{2} + 4 a + 18\right)\cdot 23 + \left(10 a^{3} + 16 a^{2} + 9 a + 21\right)\cdot 23^{2} + \left(18 a^{3} + 13 a^{2} + 11 a + 2\right)\cdot 23^{3} + \left(19 a^{3} + 11 a^{2}\right)\cdot 23^{4} + \left(10 a^{3} + 19 a^{2} + 15 a + 12\right)\cdot 23^{5} + \left(2 a^{3} + 3 a^{2} + 17 a + 2\right)\cdot 23^{6} +O(23^{7})\)
|
$r_{ 9 }$ | $=$ |
\( 12 a^{2} + 16 a + \left(21 a^{3} + 10 a^{2} + 22 a + 10\right)\cdot 23 + \left(20 a^{3} + 16 a^{2} + 4 a + 11\right)\cdot 23^{2} + \left(15 a^{3} + 13 a^{2} + 12 a + 6\right)\cdot 23^{3} + \left(5 a^{3} + 13 a^{2} + 10 a + 4\right)\cdot 23^{4} + \left(13 a^{2} + 16 a + 14\right)\cdot 23^{5} + \left(8 a^{3} + 5 a^{2} + 8 a + 1\right)\cdot 23^{6} +O(23^{7})\)
|
$r_{ 10 }$ | $=$ |
\( 12 a^{3} + 15 a^{2} + 8 + \left(5 a^{3} + 6 a^{2} + 15 a + 9\right)\cdot 23 + \left(9 a^{3} + 5 a^{2} + 10 a + 16\right)\cdot 23^{2} + \left(18 a^{3} + 22 a^{2} + 21 a + 20\right)\cdot 23^{3} + \left(7 a^{3} + 21 a^{2} + 21 a + 22\right)\cdot 23^{4} + \left(20 a^{3} + 9 a^{2} + 11\right)\cdot 23^{5} + \left(20 a^{3} + 15 a^{2} + 21 a\right)\cdot 23^{6} +O(23^{7})\)
|
$r_{ 11 }$ | $=$ |
\( 5 a^{3} + 11 a^{2} + 4 a + 18 + \left(12 a^{3} + 15 a^{2} + 8 a + 18\right)\cdot 23 + \left(19 a^{3} + 19 a^{2} + 7 a + 13\right)\cdot 23^{2} + \left(7 a^{3} + 19 a^{2} + 21 a + 21\right)\cdot 23^{3} + \left(20 a^{3} + 20 a^{2} + 17 a + 16\right)\cdot 23^{4} + \left(13 a^{3} + 9 a^{2} + 13 a + 1\right)\cdot 23^{5} + \left(2 a^{3} + 6 a^{2} + 3 a + 12\right)\cdot 23^{6} +O(23^{7})\)
|
$r_{ 12 }$ | $=$ |
\( 19 a^{3} + 2 a^{2} + 22 a + 1 + \left(5 a^{3} + 11 a^{2} + 20 a + 1\right)\cdot 23 + \left(8 a^{3} + 6 a^{2} + 12 a + 4\right)\cdot 23^{2} + \left(16 a^{3} + 14 a^{2} + 11 a + 11\right)\cdot 23^{3} + \left(14 a^{3} + 18 a^{2} + 16 a + 7\right)\cdot 23^{4} + \left(a^{3} + 5 a^{2} + 8 a + 18\right)\cdot 23^{5} + \left(22 a^{3} + 19 a^{2} + a + 19\right)\cdot 23^{6} +O(23^{7})\)
|
Generators of the action on the roots $r_1, \ldots, r_{ 12 }$
Cycle notation |
Character values on conjugacy classes
Size | Order | Action on $r_1, \ldots, r_{ 12 }$ | Character value | Complex conjugation |
$1$ | $1$ | $()$ | $2$ | |
$1$ | $2$ | $(1,12)(2,9)(3,8)(4,5)(6,11)(7,10)$ | $-2$ | |
$3$ | $2$ | $(1,12)(2,8)(3,9)(4,5)(6,10)(7,11)$ | $0$ | |
$3$ | $2$ | $(2,3)(6,7)(8,9)(10,11)$ | $0$ | ✓ |
$2$ | $3$ | $(1,7,6)(2,3,5)(4,9,8)(10,11,12)$ | $-1$ | |
$1$ | $4$ | $(1,5,12,4)(2,10,9,7)(3,11,8,6)$ | $-2 \zeta_{4}$ | |
$1$ | $4$ | $(1,4,12,5)(2,7,9,10)(3,6,8,11)$ | $2 \zeta_{4}$ | |
$3$ | $4$ | $(1,5,12,4)(2,11,9,6)(3,10,8,7)$ | $0$ | |
$3$ | $4$ | $(1,4,12,5)(2,6,9,11)(3,7,8,10)$ | $0$ | |
$2$ | $6$ | $(1,11,7,12,6,10)(2,4,3,9,5,8)$ | $1$ | |
$2$ | $12$ | $(1,8,10,5,6,9,12,3,7,4,11,2)$ | $-\zeta_{4}$ | |
$2$ | $12$ | $(1,3,10,4,6,2,12,8,7,5,11,9)$ | $\zeta_{4}$ |