Properties

Label 2.3400.12t11.a.a
Dimension $2$
Group $S_3 \times C_4$
Conductor $3400$
Root number not computed
Indicator $0$

Related objects

Downloads

Learn more

Basic invariants

Dimension: $2$
Group: $S_3 \times C_4$
Conductor: \(3400\)\(\medspace = 2^{3} \cdot 5^{2} \cdot 17 \)
Artin stem field: Galois closure of 12.4.42762752000000000.1
Galois orbit size: $2$
Smallest permutation container: $S_3 \times C_4$
Parity: odd
Determinant: 1.136.2t1.b.a
Projective image: $S_3$
Projective stem field: Galois closure of 3.1.680.1

Defining polynomial

$f(x)$$=$ \( x^{12} - 4 x^{11} + 10 x^{9} + 21 x^{8} - 70 x^{7} - 31 x^{6} + 170 x^{5} + 121 x^{4} - 610 x^{3} + \cdots + 11 \) Copy content Toggle raw display .

The roots of $f$ are computed in an extension of $\Q_{ 23 }$ to precision 7.

Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 23 }$: \( x^{4} + 3x^{2} + 19x + 5 \) Copy content Toggle raw display

Roots:
$r_{ 1 }$ $=$ \( 21 a^{3} + 9 a^{2} + 12 a + 17 + \left(20 a^{3} + 8 a^{2} + a + 10\right)\cdot 23 + \left(15 a^{3} + 3 a^{2} + 2 a + 16\right)\cdot 23^{2} + \left(15 a^{3} + 17 a^{2} + 20 a + 11\right)\cdot 23^{3} + \left(14 a^{3} + 3 a^{2} + 18 a + 13\right)\cdot 23^{4} + \left(a^{3} + 22 a^{2} + 10 a + 2\right)\cdot 23^{5} + \left(7 a^{3} + 18 a^{2} + 6 a + 1\right)\cdot 23^{6} +O(23^{7})\) Copy content Toggle raw display
$r_{ 2 }$ $=$ \( 11 a^{3} + 10 a^{2} + 6 a + 10 + \left(4 a^{3} + 18 a^{2} + 12 a + 16\right)\cdot 23 + \left(18 a^{3} + 17 a^{2} + 7 a + 20\right)\cdot 23^{2} + \left(17 a^{3} + 7 a^{2} + 16 a + 12\right)\cdot 23^{3} + \left(2 a^{3} + 8 a^{2} + 5 a + 6\right)\cdot 23^{4} + \left(10 a^{3} + 15 a^{2} + 4 a + 2\right)\cdot 23^{5} + \left(20 a^{3} + 2 a + 16\right)\cdot 23^{6} +O(23^{7})\) Copy content Toggle raw display
$r_{ 3 }$ $=$ \( 4 a^{3} + 11 a^{2} + 7 a + 3 + \left(13 a^{3} + 7 a^{2} + 6 a + 16\right)\cdot 23 + \left(20 a^{3} + 5 a^{2} + 16 a + 22\right)\cdot 23^{2} + \left(2 a^{3} + 19 a^{2} + 14 a + 7\right)\cdot 23^{3} + \left(a^{3} + 11 a^{2} + 18 a + 10\right)\cdot 23^{4} + \left(5 a^{3} + 2 a^{2} + 6 a + 1\right)\cdot 23^{5} + \left(21 a^{3} + 5 a^{2} + 2 a + 7\right)\cdot 23^{6} +O(23^{7})\) Copy content Toggle raw display
$r_{ 4 }$ $=$ \( 16 a^{3} + 22 a^{2} + 7 a + 17 + \left(11 a^{3} + 8 a^{2} + 17 a + 6\right)\cdot 23 + \left(2 a^{3} + 22 a^{2} + 21 a + 9\right)\cdot 23^{2} + \left(5 a^{3} + 19 a^{2} + 19 a + 20\right)\cdot 23^{3} + \left(a^{3} + 17 a^{2} + 15 a + 3\right)\cdot 23^{4} + \left(13 a^{3} + 21 a^{2} + 17 a + 15\right)\cdot 23^{5} + \left(22 a^{3} + 2 a + 16\right)\cdot 23^{6} +O(23^{7})\) Copy content Toggle raw display
$r_{ 5 }$ $=$ \( 13 a^{3} + 13 a^{2} + 5 a + 1 + \left(7 a^{3} + 17 a^{2} + 6 a + 1\right)\cdot 23 + \left(19 a^{3} + 13 a^{2} + 9 a + 6\right)\cdot 23^{2} + \left(8 a^{3} + 17 a^{2} + 17 a + 18\right)\cdot 23^{3} + \left(15 a^{3} + 5 a^{2} + 17 a + 20\right)\cdot 23^{4} + \left(6 a^{3} + 19 a^{2} + 8 a\right)\cdot 23^{5} + \left(17 a^{3} + 6 a^{2} + 12 a + 2\right)\cdot 23^{6} +O(23^{7})\) Copy content Toggle raw display
$r_{ 6 }$ $=$ \( 7 a^{3} + 13 a^{2} + 20 a + 15 + \left(8 a^{3} + a^{2} + 2 a + 22\right)\cdot 23 + \left(10 a^{3} + 15 a^{2} + 3 a + 19\right)\cdot 23^{2} + \left(4 a^{3} + 4 a^{2} + 19 a + 7\right)\cdot 23^{3} + \left(17 a^{3} + 3 a^{2} + 11 a + 20\right)\cdot 23^{4} + \left(21 a^{3} + 7 a^{2} + 11 a + 11\right)\cdot 23^{5} + \left(14 a^{3} + 10 a^{2} + 8 a + 15\right)\cdot 23^{6} +O(23^{7})\) Copy content Toggle raw display
$r_{ 7 }$ $=$ \( 5 a^{3} + 19 a^{2} + 11 a + 12 + \left(16 a^{3} + 2 a^{2} + 20 a + 6\right)\cdot 23 + \left(5 a^{3} + 19 a^{2} + 9 a + 21\right)\cdot 23^{2} + \left(6 a^{3} + 13 a^{2} + 21 a + 18\right)\cdot 23^{3} + \left(17 a^{3} + 4 a + 10\right)\cdot 23^{4} + \left(9 a^{3} + 14 a^{2} + 22\right)\cdot 23^{5} + \left(a^{3} + 21 a^{2} + 5 a + 19\right)\cdot 23^{6} +O(23^{7})\) Copy content Toggle raw display
$r_{ 8 }$ $=$ \( 2 a^{3} + a^{2} + 5 a + 17 + \left(11 a^{3} + 6 a^{2} + 4 a + 18\right)\cdot 23 + \left(10 a^{3} + 16 a^{2} + 9 a + 21\right)\cdot 23^{2} + \left(18 a^{3} + 13 a^{2} + 11 a + 2\right)\cdot 23^{3} + \left(19 a^{3} + 11 a^{2}\right)\cdot 23^{4} + \left(10 a^{3} + 19 a^{2} + 15 a + 12\right)\cdot 23^{5} + \left(2 a^{3} + 3 a^{2} + 17 a + 2\right)\cdot 23^{6} +O(23^{7})\) Copy content Toggle raw display
$r_{ 9 }$ $=$ \( 12 a^{2} + 16 a + \left(21 a^{3} + 10 a^{2} + 22 a + 10\right)\cdot 23 + \left(20 a^{3} + 16 a^{2} + 4 a + 11\right)\cdot 23^{2} + \left(15 a^{3} + 13 a^{2} + 12 a + 6\right)\cdot 23^{3} + \left(5 a^{3} + 13 a^{2} + 10 a + 4\right)\cdot 23^{4} + \left(13 a^{2} + 16 a + 14\right)\cdot 23^{5} + \left(8 a^{3} + 5 a^{2} + 8 a + 1\right)\cdot 23^{6} +O(23^{7})\) Copy content Toggle raw display
$r_{ 10 }$ $=$ \( 12 a^{3} + 15 a^{2} + 8 + \left(5 a^{3} + 6 a^{2} + 15 a + 9\right)\cdot 23 + \left(9 a^{3} + 5 a^{2} + 10 a + 16\right)\cdot 23^{2} + \left(18 a^{3} + 22 a^{2} + 21 a + 20\right)\cdot 23^{3} + \left(7 a^{3} + 21 a^{2} + 21 a + 22\right)\cdot 23^{4} + \left(20 a^{3} + 9 a^{2} + 11\right)\cdot 23^{5} + \left(20 a^{3} + 15 a^{2} + 21 a\right)\cdot 23^{6} +O(23^{7})\) Copy content Toggle raw display
$r_{ 11 }$ $=$ \( 5 a^{3} + 11 a^{2} + 4 a + 18 + \left(12 a^{3} + 15 a^{2} + 8 a + 18\right)\cdot 23 + \left(19 a^{3} + 19 a^{2} + 7 a + 13\right)\cdot 23^{2} + \left(7 a^{3} + 19 a^{2} + 21 a + 21\right)\cdot 23^{3} + \left(20 a^{3} + 20 a^{2} + 17 a + 16\right)\cdot 23^{4} + \left(13 a^{3} + 9 a^{2} + 13 a + 1\right)\cdot 23^{5} + \left(2 a^{3} + 6 a^{2} + 3 a + 12\right)\cdot 23^{6} +O(23^{7})\) Copy content Toggle raw display
$r_{ 12 }$ $=$ \( 19 a^{3} + 2 a^{2} + 22 a + 1 + \left(5 a^{3} + 11 a^{2} + 20 a + 1\right)\cdot 23 + \left(8 a^{3} + 6 a^{2} + 12 a + 4\right)\cdot 23^{2} + \left(16 a^{3} + 14 a^{2} + 11 a + 11\right)\cdot 23^{3} + \left(14 a^{3} + 18 a^{2} + 16 a + 7\right)\cdot 23^{4} + \left(a^{3} + 5 a^{2} + 8 a + 18\right)\cdot 23^{5} + \left(22 a^{3} + 19 a^{2} + a + 19\right)\cdot 23^{6} +O(23^{7})\) Copy content Toggle raw display

Generators of the action on the roots $r_1, \ldots, r_{ 12 }$

Cycle notation
$(1,5,12,4)(2,11,9,6)(3,10,8,7)$
$(1,10)(2,4)(3,8)(5,9)(6,11)(7,12)$
$(1,12)(2,8)(3,9)(4,5)(6,10)(7,11)$
$(2,3)(6,7)(8,9)(10,11)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 12 }$ Character valueComplex conjugation
$1$$1$$()$$2$
$1$$2$$(1,12)(2,9)(3,8)(4,5)(6,11)(7,10)$$-2$
$3$$2$$(1,12)(2,8)(3,9)(4,5)(6,10)(7,11)$$0$
$3$$2$$(2,3)(6,7)(8,9)(10,11)$$0$
$2$$3$$(1,7,6)(2,3,5)(4,9,8)(10,11,12)$$-1$
$1$$4$$(1,5,12,4)(2,10,9,7)(3,11,8,6)$$-2 \zeta_{4}$
$1$$4$$(1,4,12,5)(2,7,9,10)(3,6,8,11)$$2 \zeta_{4}$
$3$$4$$(1,5,12,4)(2,11,9,6)(3,10,8,7)$$0$
$3$$4$$(1,4,12,5)(2,6,9,11)(3,7,8,10)$$0$
$2$$6$$(1,11,7,12,6,10)(2,4,3,9,5,8)$$1$
$2$$12$$(1,8,10,5,6,9,12,3,7,4,11,2)$$-\zeta_{4}$
$2$$12$$(1,3,10,4,6,2,12,8,7,5,11,9)$$\zeta_{4}$