Properties

Label 2.3300.6t3.h
Dimension $2$
Group $D_{6}$
Conductor $3300$
Indicator $1$

Related objects

Downloads

Learn more

Basic invariants

Dimension:$2$
Group:$D_{6}$
Conductor:\(3300\)\(\medspace = 2^{2} \cdot 3 \cdot 5^{2} \cdot 11 \)
Frobenius-Schur indicator: $1$
Root number: $1$
Artin number field: Galois closure of 6.0.119790000.1
Galois orbit size: $1$
Smallest permutation container: $D_{6}$
Parity: odd
Projective image: $S_3$
Projective field: Galois closure of 3.1.3300.1

Galois action

Roots of defining polynomial

The roots of $f$ are computed in an extension of $\Q_{ 31 }$ to precision 6.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 31 }$: \( x^{2} + 29x + 3 \) Copy content Toggle raw display
Roots:
$r_{ 1 }$ $=$ \( 16 a + 12 + \left(19 a + 3\right)\cdot 31 + \left(13 a + 19\right)\cdot 31^{2} + \left(3 a + 30\right)\cdot 31^{3} + \left(2 a + 26\right)\cdot 31^{4} + \left(29 a + 24\right)\cdot 31^{5} +O(31^{6})\) Copy content Toggle raw display
$r_{ 2 }$ $=$ \( 15 a + 13 + \left(11 a + 26\right)\cdot 31 + \left(17 a + 26\right)\cdot 31^{2} + \left(27 a + 23\right)\cdot 31^{3} + \left(28 a + 27\right)\cdot 31^{4} + \left(a + 18\right)\cdot 31^{5} +O(31^{6})\) Copy content Toggle raw display
$r_{ 3 }$ $=$ \( 29 a + 28 + \left(12 a + 5\right)\cdot 31 + \left(21 a + 4\right)\cdot 31^{2} + \left(29 a + 3\right)\cdot 31^{3} + \left(16 a + 17\right)\cdot 31^{4} + \left(13 a + 20\right)\cdot 31^{5} +O(31^{6})\) Copy content Toggle raw display
$r_{ 4 }$ $=$ \( 2 a + 24 + \left(18 a + 2\right)\cdot 31 + \left(9 a + 3\right)\cdot 31^{2} + \left(a + 10\right)\cdot 31^{3} + \left(14 a + 21\right)\cdot 31^{4} + \left(17 a + 30\right)\cdot 31^{5} +O(31^{6})\) Copy content Toggle raw display
$r_{ 5 }$ $=$ \( 11 + 22\cdot 31 + 23\cdot 31^{2} + 17\cdot 31^{3} + 23\cdot 31^{4} + 10\cdot 31^{5} +O(31^{6})\) Copy content Toggle raw display
$r_{ 6 }$ $=$ \( 7 + 31 + 16\cdot 31^{2} + 7\cdot 31^{3} + 7\cdot 31^{4} + 18\cdot 31^{5} +O(31^{6})\) Copy content Toggle raw display

Generators of the action on the roots $r_1, \ldots, r_{ 6 }$

Cycle notation
$(2,6)(4,5)$
$(1,3)(2,4)(5,6)$
$(1,2)(3,4)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 6 }$ Character values
$c1$
$1$ $1$ $()$ $2$
$1$ $2$ $(1,3)(2,4)(5,6)$ $-2$
$3$ $2$ $(1,2)(3,4)$ $0$
$3$ $2$ $(1,4)(2,3)(5,6)$ $0$
$2$ $3$ $(1,6,2)(3,5,4)$ $-1$
$2$ $6$ $(1,5,2,3,6,4)$ $1$
The blue line marks the conjugacy class containing complex conjugation.