Basic invariants
Dimension: | $2$ |
Group: | $D_{6}$ |
Conductor: | \(3300\)\(\medspace = 2^{2} \cdot 3 \cdot 5^{2} \cdot 11 \) |
Frobenius-Schur indicator: | $1$ |
Root number: | $1$ |
Artin number field: | Galois closure of 6.0.119790000.1 |
Galois orbit size: | $1$ |
Smallest permutation container: | $D_{6}$ |
Parity: | odd |
Projective image: | $S_3$ |
Projective field: | Galois closure of 3.1.3300.1 |
Galois action
Roots of defining polynomial
The roots of $f$ are computed in an extension of $\Q_{ 31 }$ to precision 6.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 31 }$:
\( x^{2} + 29x + 3 \)
Roots:
$r_{ 1 }$ | $=$ |
\( 16 a + 12 + \left(19 a + 3\right)\cdot 31 + \left(13 a + 19\right)\cdot 31^{2} + \left(3 a + 30\right)\cdot 31^{3} + \left(2 a + 26\right)\cdot 31^{4} + \left(29 a + 24\right)\cdot 31^{5} +O(31^{6})\)
|
$r_{ 2 }$ | $=$ |
\( 15 a + 13 + \left(11 a + 26\right)\cdot 31 + \left(17 a + 26\right)\cdot 31^{2} + \left(27 a + 23\right)\cdot 31^{3} + \left(28 a + 27\right)\cdot 31^{4} + \left(a + 18\right)\cdot 31^{5} +O(31^{6})\)
|
$r_{ 3 }$ | $=$ |
\( 29 a + 28 + \left(12 a + 5\right)\cdot 31 + \left(21 a + 4\right)\cdot 31^{2} + \left(29 a + 3\right)\cdot 31^{3} + \left(16 a + 17\right)\cdot 31^{4} + \left(13 a + 20\right)\cdot 31^{5} +O(31^{6})\)
|
$r_{ 4 }$ | $=$ |
\( 2 a + 24 + \left(18 a + 2\right)\cdot 31 + \left(9 a + 3\right)\cdot 31^{2} + \left(a + 10\right)\cdot 31^{3} + \left(14 a + 21\right)\cdot 31^{4} + \left(17 a + 30\right)\cdot 31^{5} +O(31^{6})\)
|
$r_{ 5 }$ | $=$ |
\( 11 + 22\cdot 31 + 23\cdot 31^{2} + 17\cdot 31^{3} + 23\cdot 31^{4} + 10\cdot 31^{5} +O(31^{6})\)
|
$r_{ 6 }$ | $=$ |
\( 7 + 31 + 16\cdot 31^{2} + 7\cdot 31^{3} + 7\cdot 31^{4} + 18\cdot 31^{5} +O(31^{6})\)
|
Generators of the action on the roots $r_1, \ldots, r_{ 6 }$
Cycle notation |
Character values on conjugacy classes
Size | Order | Action on $r_1, \ldots, r_{ 6 }$ | Character values |
$c1$ | |||
$1$ | $1$ | $()$ | $2$ |
$1$ | $2$ | $(1,3)(2,4)(5,6)$ | $-2$ |
$3$ | $2$ | $(1,2)(3,4)$ | $0$ |
$3$ | $2$ | $(1,4)(2,3)(5,6)$ | $0$ |
$2$ | $3$ | $(1,6,2)(3,5,4)$ | $-1$ |
$2$ | $6$ | $(1,5,2,3,6,4)$ | $1$ |