Properties

Label 2.3300.6t3.e
Dimension $2$
Group $D_{6}$
Conductor $3300$
Indicator $1$

Related objects

Downloads

Learn more

Basic invariants

Dimension:$2$
Group:$D_{6}$
Conductor:\(3300\)\(\medspace = 2^{2} \cdot 3 \cdot 5^{2} \cdot 11 \)
Frobenius-Schur indicator: $1$
Root number: $1$
Artin number field: Galois closure of 6.0.217800000.1
Galois orbit size: $1$
Smallest permutation container: $D_{6}$
Parity: odd
Projective image: $S_3$
Projective field: Galois closure of 3.1.3300.1

Galois action

Roots of defining polynomial

The roots of $f$ are computed in an extension of $\Q_{ 61 }$ to precision 6.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 61 }$: \( x^{2} + 60x + 2 \) Copy content Toggle raw display
Roots:
$r_{ 1 }$ $=$ \( 58 a + 23 + \left(2 a + 28\right)\cdot 61 + \left(46 a + 46\right)\cdot 61^{2} + \left(32 a + 40\right)\cdot 61^{3} + \left(44 a + 58\right)\cdot 61^{4} + \left(36 a + 30\right)\cdot 61^{5} +O(61^{6})\) Copy content Toggle raw display
$r_{ 2 }$ $=$ \( 24 + 14\cdot 61 + 7\cdot 61^{2} + 4\cdot 61^{3} + 3\cdot 61^{4} + 46\cdot 61^{5} +O(61^{6})\) Copy content Toggle raw display
$r_{ 3 }$ $=$ \( 58 a + 41 + \left(2 a + 26\right)\cdot 61 + \left(46 a + 32\right)\cdot 61^{2} + \left(32 a + 33\right)\cdot 61^{3} + \left(44 a + 51\right)\cdot 61^{4} + \left(36 a + 37\right)\cdot 61^{5} +O(61^{6})\) Copy content Toggle raw display
$r_{ 4 }$ $=$ \( 3 a + 38 + \left(58 a + 32\right)\cdot 61 + \left(14 a + 14\right)\cdot 61^{2} + \left(28 a + 20\right)\cdot 61^{3} + \left(16 a + 2\right)\cdot 61^{4} + \left(24 a + 30\right)\cdot 61^{5} +O(61^{6})\) Copy content Toggle raw display
$r_{ 5 }$ $=$ \( 37 + 46\cdot 61 + 53\cdot 61^{2} + 56\cdot 61^{3} + 57\cdot 61^{4} + 14\cdot 61^{5} +O(61^{6})\) Copy content Toggle raw display
$r_{ 6 }$ $=$ \( 3 a + 20 + \left(58 a + 34\right)\cdot 61 + \left(14 a + 28\right)\cdot 61^{2} + \left(28 a + 27\right)\cdot 61^{3} + \left(16 a + 9\right)\cdot 61^{4} + \left(24 a + 23\right)\cdot 61^{5} +O(61^{6})\) Copy content Toggle raw display

Generators of the action on the roots $r_1, \ldots, r_{ 6 }$

Cycle notation
$(1,2,6,4,5,3)$
$(2,3)(5,6)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 6 }$ Character values
$c1$
$1$ $1$ $()$ $2$
$1$ $2$ $(1,4)(2,5)(3,6)$ $-2$
$3$ $2$ $(2,3)(5,6)$ $0$
$3$ $2$ $(1,2)(3,6)(4,5)$ $0$
$2$ $3$ $(1,6,5)(2,4,3)$ $-1$
$2$ $6$ $(1,2,6,4,5,3)$ $1$
The blue line marks the conjugacy class containing complex conjugation.