Basic invariants
| Dimension: | $2$ |
| Group: | $S_3\times C_3$ |
| Conductor: | \(327\)\(\medspace = 3 \cdot 109 \) |
| Artin stem field: | Galois closure of 6.0.320787.3 |
| Galois orbit size: | $2$ |
| Smallest permutation container: | $S_3\times C_3$ |
| Parity: | odd |
| Determinant: | 1.327.6t1.a.a |
| Projective image: | $S_3$ |
| Projective stem field: | Galois closure of 3.1.35643.1 |
Defining polynomial
| $f(x)$ | $=$ |
\( x^{6} - 3x^{5} + 4x^{4} + x^{3} - 5x^{2} + 2x + 4 \)
|
The roots of $f$ are computed in an extension of $\Q_{ 17 }$ to precision 6.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 17 }$:
\( x^{2} + 16x + 3 \)
Roots:
| $r_{ 1 }$ | $=$ |
\( 12 a + 6 + \left(2 a + 14\right)\cdot 17 + \left(10 a + 16\right)\cdot 17^{2} + 5 a\cdot 17^{3} + \left(3 a + 14\right)\cdot 17^{4} + \left(8 a + 8\right)\cdot 17^{5} +O(17^{6})\)
|
| $r_{ 2 }$ | $=$ |
\( 14 a + 10 + 15\cdot 17 + \left(6 a + 15\right)\cdot 17^{2} + \left(8 a + 12\right)\cdot 17^{3} + \left(13 a + 11\right)\cdot 17^{4} + \left(16 a + 14\right)\cdot 17^{5} +O(17^{6})\)
|
| $r_{ 3 }$ | $=$ |
\( 5 a + 1 + \left(14 a + 5\right)\cdot 17 + \left(6 a + 7\right)\cdot 17^{2} + \left(11 a + 13\right)\cdot 17^{3} + \left(13 a + 11\right)\cdot 17^{4} + \left(8 a + 13\right)\cdot 17^{5} +O(17^{6})\)
|
| $r_{ 4 }$ | $=$ |
\( 3 a + 7 + \left(16 a + 2\right)\cdot 17 + \left(10 a + 4\right)\cdot 17^{2} + \left(8 a + 15\right)\cdot 17^{3} + \left(3 a + 16\right)\cdot 17^{4} +O(17^{6})\)
|
| $r_{ 5 }$ | $=$ |
\( 7 a + 3 + \left(11 a + 13\right)\cdot 17 + \left(8 a + 4\right)\cdot 17^{2} + \left(15 a + 9\right)\cdot 17^{3} + \left(13 a + 7\right)\cdot 17^{4} + \left(14 a + 14\right)\cdot 17^{5} +O(17^{6})\)
|
| $r_{ 6 }$ | $=$ |
\( 10 a + 10 + 5 a\cdot 17 + \left(8 a + 2\right)\cdot 17^{2} + \left(a + 16\right)\cdot 17^{3} + \left(3 a + 5\right)\cdot 17^{4} + \left(2 a + 15\right)\cdot 17^{5} +O(17^{6})\)
|
Generators of the action on the roots $r_1, \ldots, r_{ 6 }$
| Cycle notation |
Character values on conjugacy classes
| Size | Order | Action on $r_1, \ldots, r_{ 6 }$ | Character value | Complex conjugation |
| $1$ | $1$ | $()$ | $2$ | |
| $3$ | $2$ | $(1,2)(3,5)(4,6)$ | $0$ | ✓ |
| $1$ | $3$ | $(1,5,4)(2,3,6)$ | $-2 \zeta_{3} - 2$ | |
| $1$ | $3$ | $(1,4,5)(2,6,3)$ | $2 \zeta_{3}$ | |
| $2$ | $3$ | $(2,6,3)$ | $\zeta_{3} + 1$ | |
| $2$ | $3$ | $(2,3,6)$ | $-\zeta_{3}$ | |
| $2$ | $3$ | $(1,5,4)(2,6,3)$ | $-1$ | |
| $3$ | $6$ | $(1,2,5,3,4,6)$ | $0$ | |
| $3$ | $6$ | $(1,6,4,3,5,2)$ | $0$ |