Properties

Label 2.3072.8t6.a
Dimension $2$
Group $D_{8}$
Conductor $3072$
Indicator $1$

Related objects

Downloads

Learn more

Basic invariants

Dimension:$2$
Group:$D_{8}$
Conductor:\(3072\)\(\medspace = 2^{10} \cdot 3 \)
Frobenius-Schur indicator: $1$
Root number: $1$
Artin number field: Galois closure of 8.0.57982058496.7
Galois orbit size: $2$
Smallest permutation container: $D_{8}$
Parity: odd
Projective image: $D_4$
Projective field: Galois closure of 4.0.6144.1

Galois action

Roots of defining polynomial

The roots of $f$ are computed in $\Q_{ 67 }$ to precision 7.
Roots:
$r_{ 1 }$ $=$ \( 2 + 19\cdot 67 + 46\cdot 67^{2} + 64\cdot 67^{3} + 49\cdot 67^{4} + 21\cdot 67^{5} + 61\cdot 67^{6} +O(67^{7})\) Copy content Toggle raw display
$r_{ 2 }$ $=$ \( 3 + 41\cdot 67 + 42\cdot 67^{2} + 3\cdot 67^{3} + 44\cdot 67^{4} + 46\cdot 67^{5} + 29\cdot 67^{6} +O(67^{7})\) Copy content Toggle raw display
$r_{ 3 }$ $=$ \( 10 + 34\cdot 67 + 42\cdot 67^{2} + 2\cdot 67^{3} + 62\cdot 67^{4} + 11\cdot 67^{5} + 14\cdot 67^{6} +O(67^{7})\) Copy content Toggle raw display
$r_{ 4 }$ $=$ \( 17 + 61\cdot 67 + 48\cdot 67^{3} + 31\cdot 67^{4} + 46\cdot 67^{5} + 15\cdot 67^{6} +O(67^{7})\) Copy content Toggle raw display
$r_{ 5 }$ $=$ \( 50 + 5\cdot 67 + 66\cdot 67^{2} + 18\cdot 67^{3} + 35\cdot 67^{4} + 20\cdot 67^{5} + 51\cdot 67^{6} +O(67^{7})\) Copy content Toggle raw display
$r_{ 6 }$ $=$ \( 57 + 32\cdot 67 + 24\cdot 67^{2} + 64\cdot 67^{3} + 4\cdot 67^{4} + 55\cdot 67^{5} + 52\cdot 67^{6} +O(67^{7})\) Copy content Toggle raw display
$r_{ 7 }$ $=$ \( 64 + 25\cdot 67 + 24\cdot 67^{2} + 63\cdot 67^{3} + 22\cdot 67^{4} + 20\cdot 67^{5} + 37\cdot 67^{6} +O(67^{7})\) Copy content Toggle raw display
$r_{ 8 }$ $=$ \( 65 + 47\cdot 67 + 20\cdot 67^{2} + 2\cdot 67^{3} + 17\cdot 67^{4} + 45\cdot 67^{5} + 5\cdot 67^{6} +O(67^{7})\) Copy content Toggle raw display

Generators of the action on the roots $r_1, \ldots, r_{ 8 }$

Cycle notation
$(1,8)(2,7)(3,6)(4,5)$
$(1,7)(2,8)(4,5)$
$(1,3,7,5,8,6,2,4)$
$(1,2,8,7)(3,4,6,5)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 8 }$ Character values
$c1$ $c2$
$1$ $1$ $()$ $2$ $2$
$1$ $2$ $(1,8)(2,7)(3,6)(4,5)$ $-2$ $-2$
$4$ $2$ $(1,7)(2,8)(4,5)$ $0$ $0$
$4$ $2$ $(1,5)(2,6)(3,7)(4,8)$ $0$ $0$
$2$ $4$ $(1,7,8,2)(3,5,6,4)$ $0$ $0$
$2$ $8$ $(1,3,7,5,8,6,2,4)$ $-\zeta_{8}^{3} + \zeta_{8}$ $\zeta_{8}^{3} - \zeta_{8}$
$2$ $8$ $(1,5,2,3,8,4,7,6)$ $\zeta_{8}^{3} - \zeta_{8}$ $-\zeta_{8}^{3} + \zeta_{8}$
The blue line marks the conjugacy class containing complex conjugation.