Basic invariants
Dimension: | $2$ |
Group: | $D_{6}$ |
Conductor: | \(300\)\(\medspace = 2^{2} \cdot 3 \cdot 5^{2} \) |
Frobenius-Schur indicator: | $1$ |
Root number: | $1$ |
Artin stem field: | Galois closure of 6.2.450000.1 |
Galois orbit size: | $1$ |
Smallest permutation container: | $D_{6}$ |
Parity: | odd |
Determinant: | 1.3.2t1.a.a |
Projective image: | $S_3$ |
Projective stem field: | Galois closure of 3.1.300.1 |
Defining polynomial
$f(x)$ | $=$ |
\( x^{6} - x^{5} - 5x^{3} - x + 1 \)
|
The roots of $f$ are computed in an extension of $\Q_{ 11 }$ to precision 7.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 11 }$:
\( x^{2} + 7x + 2 \)
Roots:
$r_{ 1 }$ | $=$ |
\( 9 a + 2 + \left(a + 1\right)\cdot 11 + 8\cdot 11^{2} + \left(10 a + 6\right)\cdot 11^{3} + \left(9 a + 8\right)\cdot 11^{4} + \left(3 a + 9\right)\cdot 11^{5} + \left(10 a + 4\right)\cdot 11^{6} +O(11^{7})\)
|
$r_{ 2 }$ | $=$ |
\( 8 + 2\cdot 11 + 7\cdot 11^{2} + 4\cdot 11^{3} + 2\cdot 11^{4} + 3\cdot 11^{5} + 10\cdot 11^{6} +O(11^{7})\)
|
$r_{ 3 }$ | $=$ |
\( 6 a + 5 + \left(10 a + 2\right)\cdot 11 + \left(a + 4\right)\cdot 11^{2} + \left(8 a + 9\right)\cdot 11^{3} + \left(4 a + 4\right)\cdot 11^{4} + \left(9 a + 7\right)\cdot 11^{5} + \left(9 a + 9\right)\cdot 11^{6} +O(11^{7})\)
|
$r_{ 4 }$ | $=$ |
\( 2 a + 5 + \left(9 a + 10\right)\cdot 11 + \left(10 a + 6\right)\cdot 11^{2} + 2\cdot 11^{3} + \left(a + 5\right)\cdot 11^{4} + \left(7 a + 4\right)\cdot 11^{5} + 9\cdot 11^{6} +O(11^{7})\)
|
$r_{ 5 }$ | $=$ |
\( 7 + 10\cdot 11 + 4\cdot 11^{2} + 2\cdot 11^{3} + 7\cdot 11^{4} + 3\cdot 11^{6} +O(11^{7})\)
|
$r_{ 6 }$ | $=$ |
\( 5 a + 7 + 5\cdot 11 + \left(9 a + 1\right)\cdot 11^{2} + \left(2 a + 7\right)\cdot 11^{3} + \left(6 a + 4\right)\cdot 11^{4} + \left(a + 7\right)\cdot 11^{5} + \left(a + 6\right)\cdot 11^{6} +O(11^{7})\)
|
Generators of the action on the roots $r_1, \ldots, r_{ 6 }$
Cycle notation |
Character values on conjugacy classes
Size | Order | Action on $r_1, \ldots, r_{ 6 }$ | Character value | Complex conjugation |
$1$ | $1$ | $()$ | $2$ | |
$1$ | $2$ | $(1,6)(2,5)(3,4)$ | $-2$ | |
$3$ | $2$ | $(1,2)(5,6)$ | $0$ | ✓ |
$3$ | $2$ | $(1,6)(2,3)(4,5)$ | $0$ | |
$2$ | $3$ | $(1,2,4)(3,6,5)$ | $-1$ | |
$2$ | $6$ | $(1,3,2,6,4,5)$ | $1$ |