Basic invariants
Dimension: | $2$ |
Group: | $D_{6}$ |
Conductor: | \(1728\)\(\medspace = 2^{6} \cdot 3^{3} \) |
Frobenius-Schur indicator: | $1$ |
Root number: | $1$ |
Artin number field: | Galois closure of 6.2.1492992.4 |
Galois orbit size: | $1$ |
Smallest permutation container: | $D_{6}$ |
Parity: | odd |
Projective image: | $S_3$ |
Projective field: | Galois closure of 3.1.108.1 |
Galois action
Roots of defining polynomial
The roots of $f$ are computed in an extension of $\Q_{ 17 }$ to precision 5.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 17 }$:
\( x^{2} + 16x + 3 \)
Roots:
$r_{ 1 }$ | $=$ |
\( 8 a + 7 + \left(3 a + 11\right)\cdot 17 + \left(3 a + 4\right)\cdot 17^{2} + \left(16 a + 1\right)\cdot 17^{3} + \left(15 a + 10\right)\cdot 17^{4} +O(17^{5})\)
|
$r_{ 2 }$ | $=$ |
\( 5 + 17 + 9\cdot 17^{2} + 15\cdot 17^{3} + 2\cdot 17^{4} +O(17^{5})\)
|
$r_{ 3 }$ | $=$ |
\( 9 a + 15 + \left(13 a + 6\right)\cdot 17 + \left(13 a + 4\right)\cdot 17^{2} + 14\cdot 17^{3} + \left(a + 9\right)\cdot 17^{4} +O(17^{5})\)
|
$r_{ 4 }$ | $=$ |
\( 9 a + 10 + \left(13 a + 5\right)\cdot 17 + \left(13 a + 12\right)\cdot 17^{2} + 15\cdot 17^{3} + \left(a + 6\right)\cdot 17^{4} +O(17^{5})\)
|
$r_{ 5 }$ | $=$ |
\( 12 + 15\cdot 17 + 7\cdot 17^{2} + 17^{3} + 14\cdot 17^{4} +O(17^{5})\)
|
$r_{ 6 }$ | $=$ |
\( 8 a + 2 + \left(3 a + 10\right)\cdot 17 + \left(3 a + 12\right)\cdot 17^{2} + \left(16 a + 2\right)\cdot 17^{3} + \left(15 a + 7\right)\cdot 17^{4} +O(17^{5})\)
|
Generators of the action on the roots $r_1, \ldots, r_{ 6 }$
Cycle notation |
Character values on conjugacy classes
Size | Order | Action on $r_1, \ldots, r_{ 6 }$ | Character values |
$c1$ | |||
$1$ | $1$ | $()$ | $2$ |
$1$ | $2$ | $(1,4)(2,5)(3,6)$ | $-2$ |
$3$ | $2$ | $(2,6)(3,5)$ | $0$ |
$3$ | $2$ | $(1,2)(3,6)(4,5)$ | $0$ |
$2$ | $3$ | $(1,3,5)(2,4,6)$ | $-1$ |
$2$ | $6$ | $(1,2,3,4,5,6)$ | $1$ |