Properties

Label 2.328.8t17.b
Dimension $2$
Group $C_4\wr C_2$
Conductor $328$
Indicator $0$

Related objects

Downloads

Learn more

Basic invariants

Dimension:$2$
Group:$C_4\wr C_2$
Conductor:\(328\)\(\medspace = 2^{3} \cdot 41 \)
Artin number field: Galois closure of 8.0.282300416.3
Galois orbit size: $2$
Smallest permutation container: $C_4\wr C_2$
Parity: odd
Projective image: $D_4$
Projective field: Galois closure of 4.2.551368.1

Galois action

Roots of defining polynomial

The roots of $f$ are computed in $\Q_{ 163 }$ to precision 10.
Roots:
$r_{ 1 }$ $=$ \( 15 + 37\cdot 163 + 87\cdot 163^{2} + 160\cdot 163^{3} + 143\cdot 163^{4} + 66\cdot 163^{5} + 120\cdot 163^{6} + 29\cdot 163^{7} + 133\cdot 163^{8} + 106\cdot 163^{9} +O(163^{10})\) Copy content Toggle raw display
$r_{ 2 }$ $=$ \( 18 + 35\cdot 163 + 93\cdot 163^{2} + 152\cdot 163^{3} + 113\cdot 163^{4} + 2\cdot 163^{5} + 140\cdot 163^{6} + 143\cdot 163^{7} + 128\cdot 163^{8} + 88\cdot 163^{9} +O(163^{10})\) Copy content Toggle raw display
$r_{ 3 }$ $=$ \( 45 + 149\cdot 163 + 53\cdot 163^{2} + 10\cdot 163^{3} + 132\cdot 163^{4} + 156\cdot 163^{5} + 116\cdot 163^{6} + 147\cdot 163^{7} + 5\cdot 163^{8} + 114\cdot 163^{9} +O(163^{10})\) Copy content Toggle raw display
$r_{ 4 }$ $=$ \( 78 + 156\cdot 163 + 160\cdot 163^{2} + 71\cdot 163^{3} + 71\cdot 163^{4} + 126\cdot 163^{5} + 142\cdot 163^{6} + 163^{7} + 50\cdot 163^{8} + 17\cdot 163^{9} +O(163^{10})\) Copy content Toggle raw display
$r_{ 5 }$ $=$ \( 101 + 153\cdot 163 + 58\cdot 163^{2} + 6\cdot 163^{3} + 126\cdot 163^{4} + 34\cdot 163^{5} + 144\cdot 163^{6} + 84\cdot 163^{7} + 71\cdot 163^{8} + 150\cdot 163^{9} +O(163^{10})\) Copy content Toggle raw display
$r_{ 6 }$ $=$ \( 114 + 154\cdot 163 + 15\cdot 163^{2} + 79\cdot 163^{3} + 42\cdot 163^{4} + 38\cdot 163^{5} + 49\cdot 163^{6} + 64\cdot 163^{7} + 76\cdot 163^{8} + 160\cdot 163^{9} +O(163^{10})\) Copy content Toggle raw display
$r_{ 7 }$ $=$ \( 133 + 161\cdot 163 + 95\cdot 163^{2} + 50\cdot 163^{3} + 18\cdot 163^{4} + 65\cdot 163^{5} + 4\cdot 163^{6} + 69\cdot 163^{7} + 39\cdot 163^{8} + 32\cdot 163^{9} +O(163^{10})\) Copy content Toggle raw display
$r_{ 8 }$ $=$ \( 150 + 129\cdot 163 + 85\cdot 163^{2} + 120\cdot 163^{3} + 3\cdot 163^{4} + 161\cdot 163^{5} + 96\cdot 163^{6} + 110\cdot 163^{7} + 146\cdot 163^{8} + 144\cdot 163^{9} +O(163^{10})\) Copy content Toggle raw display

Generators of the action on the roots $r_1, \ldots, r_{ 8 }$

Cycle notation
$(1,4)(2,5)(3,7)(6,8)$
$(1,7)(5,6)$
$(1,7)(2,8)(3,4)(5,6)$
$(1,6,7,5)(2,3,8,4)$
$(1,6,7,5)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 8 }$ Character values
$c1$ $c2$
$1$ $1$ $()$ $2$ $2$
$1$ $2$ $(1,7)(2,8)(3,4)(5,6)$ $-2$ $-2$
$2$ $2$ $(1,7)(5,6)$ $0$ $0$
$4$ $2$ $(1,4)(2,5)(3,7)(6,8)$ $0$ $0$
$1$ $4$ $(1,6,7,5)(2,4,8,3)$ $-2 \zeta_{4}$ $2 \zeta_{4}$
$1$ $4$ $(1,5,7,6)(2,3,8,4)$ $2 \zeta_{4}$ $-2 \zeta_{4}$
$2$ $4$ $(1,6,7,5)(2,3,8,4)$ $0$ $0$
$2$ $4$ $(1,6,7,5)$ $-\zeta_{4} + 1$ $\zeta_{4} + 1$
$2$ $4$ $(1,5,7,6)$ $\zeta_{4} + 1$ $-\zeta_{4} + 1$
$2$ $4$ $(1,7)(2,3,8,4)(5,6)$ $\zeta_{4} - 1$ $-\zeta_{4} - 1$
$2$ $4$ $(1,7)(2,4,8,3)(5,6)$ $-\zeta_{4} - 1$ $\zeta_{4} - 1$
$4$ $4$ $(1,4,7,3)(2,6,8,5)$ $0$ $0$
$4$ $8$ $(1,4,6,8,7,3,5,2)$ $0$ $0$
$4$ $8$ $(1,8,5,4,7,2,6,3)$ $0$ $0$
The blue line marks the conjugacy class containing complex conjugation.