Properties

Label 2.1024.8t6.a.b
Dimension $2$
Group $D_{8}$
Conductor $1024$
Root number $1$
Indicator $1$

Related objects

Downloads

Learn more

Basic invariants

Dimension: $2$
Group: $D_{8}$
Conductor: \(1024\)\(\medspace = 2^{10} \)
Frobenius-Schur indicator: $1$
Root number: $1$
Artin stem field: Galois closure of 8.2.2147483648.1
Galois orbit size: $2$
Smallest permutation container: $D_{8}$
Parity: odd
Determinant: 1.4.2t1.a.a
Projective image: $D_4$
Projective stem field: Galois closure of 4.2.2048.1

Defining polynomial

$f(x)$$=$ \( x^{8} - 8x^{4} - 2 \) Copy content Toggle raw display .

The roots of $f$ are computed in $\Q_{ 257 }$ to precision 5.

Roots:
$r_{ 1 }$ $=$ \( 3 + 32\cdot 257 + 120\cdot 257^{2} + 169\cdot 257^{3} + 247\cdot 257^{4} +O(257^{5})\) Copy content Toggle raw display
$r_{ 2 }$ $=$ \( 39 + 180\cdot 257 + 227\cdot 257^{2} + 217\cdot 257^{3} + 16\cdot 257^{4} +O(257^{5})\) Copy content Toggle raw display
$r_{ 3 }$ $=$ \( 48 + 22\cdot 257 + 140\cdot 257^{2} + 24\cdot 257^{3} + 12\cdot 257^{4} +O(257^{5})\) Copy content Toggle raw display
$r_{ 4 }$ $=$ \( 110 + 110\cdot 257 + 178\cdot 257^{2} + 158\cdot 257^{3} + 177\cdot 257^{4} +O(257^{5})\) Copy content Toggle raw display
$r_{ 5 }$ $=$ \( 147 + 146\cdot 257 + 78\cdot 257^{2} + 98\cdot 257^{3} + 79\cdot 257^{4} +O(257^{5})\) Copy content Toggle raw display
$r_{ 6 }$ $=$ \( 209 + 234\cdot 257 + 116\cdot 257^{2} + 232\cdot 257^{3} + 244\cdot 257^{4} +O(257^{5})\) Copy content Toggle raw display
$r_{ 7 }$ $=$ \( 218 + 76\cdot 257 + 29\cdot 257^{2} + 39\cdot 257^{3} + 240\cdot 257^{4} +O(257^{5})\) Copy content Toggle raw display
$r_{ 8 }$ $=$ \( 254 + 224\cdot 257 + 136\cdot 257^{2} + 87\cdot 257^{3} + 9\cdot 257^{4} +O(257^{5})\) Copy content Toggle raw display

Generators of the action on the roots $r_1, \ldots, r_{ 8 }$

Cycle notation
$(1,7,3,5,8,2,6,4)$
$(1,8)(2,7)(3,6)(4,5)$
$(1,3,8,6)(2,4,7,5)$
$(1,8)(2,4)(5,7)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 8 }$ Character valueComplex conjugation
$1$$1$$()$$2$
$1$$2$$(1,8)(2,7)(3,6)(4,5)$$-2$
$4$$2$$(1,8)(2,4)(5,7)$$0$
$4$$2$$(1,2)(3,5)(4,6)(7,8)$$0$
$2$$4$$(1,3,8,6)(2,4,7,5)$$0$
$2$$8$$(1,7,3,5,8,2,6,4)$$\zeta_{8}^{3} - \zeta_{8}$
$2$$8$$(1,5,6,7,8,4,3,2)$$-\zeta_{8}^{3} + \zeta_{8}$