Properties

Label 2.2856.6t3.j
Dimension $2$
Group $D_{6}$
Conductor $2856$
Indicator $1$

Related objects

Downloads

Learn more

Basic invariants

Dimension:$2$
Group:$D_{6}$
Conductor:\(2856\)\(\medspace = 2^{3} \cdot 3 \cdot 7 \cdot 17 \)
Frobenius-Schur indicator: $1$
Root number: $1$
Artin number field: Galois closure of 6.0.57097152.1
Galois orbit size: $1$
Smallest permutation container: $D_{6}$
Parity: odd
Projective image: $S_3$
Projective field: Galois closure of 3.1.2856.1

Galois action

Roots of defining polynomial

The roots of $f$ are computed in an extension of $\Q_{ 23 }$ to precision 7.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 23 }$: \( x^{2} + 21x + 5 \) Copy content Toggle raw display
Roots:
$r_{ 1 }$ $=$ \( 7 a + 18 + \left(15 a + 15\right)\cdot 23 + 16 a\cdot 23^{2} + \left(2 a + 20\right)\cdot 23^{3} + \left(21 a + 13\right)\cdot 23^{4} + \left(14 a + 5\right)\cdot 23^{5} + \left(18 a + 14\right)\cdot 23^{6} +O(23^{7})\) Copy content Toggle raw display
$r_{ 2 }$ $=$ \( 17 a + 19 + 12 a\cdot 23 + \left(9 a + 16\right)\cdot 23^{2} + \left(3 a + 1\right)\cdot 23^{3} + \left(11 a + 12\right)\cdot 23^{4} + 16\cdot 23^{5} + \left(5 a + 22\right)\cdot 23^{6} +O(23^{7})\) Copy content Toggle raw display
$r_{ 3 }$ $=$ \( 20 + 13\cdot 23 + 3\cdot 23^{2} + 17\cdot 23^{3} + 23^{4} + 3\cdot 23^{5} + 18\cdot 23^{6} +O(23^{7})\) Copy content Toggle raw display
$r_{ 4 }$ $=$ \( 16 a + 9 + \left(7 a + 16\right)\cdot 23 + \left(6 a + 18\right)\cdot 23^{2} + \left(20 a + 8\right)\cdot 23^{3} + \left(a + 7\right)\cdot 23^{4} + \left(8 a + 14\right)\cdot 23^{5} + \left(4 a + 13\right)\cdot 23^{6} +O(23^{7})\) Copy content Toggle raw display
$r_{ 5 }$ $=$ \( 21 + 12\cdot 23 + 7\cdot 23^{2} + 22\cdot 23^{3} + 2\cdot 23^{4} + 14\cdot 23^{6} +O(23^{7})\) Copy content Toggle raw display
$r_{ 6 }$ $=$ \( 6 a + 7 + \left(10 a + 9\right)\cdot 23 + \left(13 a + 22\right)\cdot 23^{2} + \left(19 a + 21\right)\cdot 23^{3} + \left(11 a + 7\right)\cdot 23^{4} + \left(22 a + 6\right)\cdot 23^{5} + \left(17 a + 9\right)\cdot 23^{6} +O(23^{7})\) Copy content Toggle raw display

Generators of the action on the roots $r_1, \ldots, r_{ 6 }$

Cycle notation
$(1,2)(3,5)(4,6)$
$(1,3)(2,5)$
$(3,4)(5,6)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 6 }$ Character values
$c1$
$1$ $1$ $()$ $2$
$1$ $2$ $(1,2)(3,5)(4,6)$ $-2$
$3$ $2$ $(1,3)(2,5)$ $0$
$3$ $2$ $(1,5)(2,3)(4,6)$ $0$
$2$ $3$ $(1,4,3)(2,6,5)$ $-1$
$2$ $6$ $(1,6,3,2,4,5)$ $1$
The blue line marks the conjugacy class containing complex conjugation.