Properties

Label 2.2592.12t18.b.b
Dimension $2$
Group $C_6\times S_3$
Conductor $2592$
Root number not computed
Indicator $0$

Related objects

Downloads

Learn more

Basic invariants

Dimension: $2$
Group: $C_6\times S_3$
Conductor: \(2592\)\(\medspace = 2^{5} \cdot 3^{4} \)
Artin stem field: Galois closure of 12.0.6499837226778624.37
Galois orbit size: $2$
Smallest permutation container: $C_6\times S_3$
Parity: odd
Determinant: 1.72.6t1.c.a
Projective image: $S_3$
Projective stem field: Galois closure of 3.1.216.1

Defining polynomial

$f(x)$$=$ \( x^{12} - 12x^{10} - 4x^{9} + 54x^{8} + 36x^{7} - 104x^{6} - 108x^{5} + 57x^{4} + 96x^{3} + 36x^{2} + 36x + 33 \) Copy content Toggle raw display .

The roots of $f$ are computed in an extension of $\Q_{ 13 }$ to precision 7.

Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 13 }$: \( x^{6} + 10x^{3} + 11x^{2} + 11x + 2 \) Copy content Toggle raw display

Roots:
$r_{ 1 }$ $=$ \( 3 a^{5} + 4 a^{4} + 8 a^{3} + 9 a^{2} + 4 a + 8 + \left(9 a^{5} + 11 a^{4} + 2 a^{3} + 6 a^{2} + 11\right)\cdot 13 + \left(10 a^{5} + a^{4} + 11 a^{3} + 10 a^{2} + 2 a + 11\right)\cdot 13^{2} + \left(6 a^{5} + 7 a^{4} + 3 a^{3} + 8 a + 12\right)\cdot 13^{3} + \left(9 a^{5} + 12 a^{4} + 10 a^{3} + a^{2} + 4 a + 11\right)\cdot 13^{4} + \left(2 a^{5} + 4 a^{4} + 4 a^{3} + a^{2} + 2 a\right)\cdot 13^{5} + \left(7 a^{5} + 4 a^{4} + 5 a + 9\right)\cdot 13^{6} +O(13^{7})\) Copy content Toggle raw display
$r_{ 2 }$ $=$ \( 10 a^{5} + 8 a^{4} + 7 a^{3} + 5 a^{2} + a + 12 + \left(6 a^{5} + 8 a^{4} + 9 a^{3} + 2 a^{2} + 9 a + 3\right)\cdot 13 + \left(3 a^{5} + 7 a^{4} + 11 a^{3} + 10 a^{2} + 12 a + 6\right)\cdot 13^{2} + \left(4 a^{5} + 10 a^{4} + 8 a^{3} + 11 a^{2} + 2 a + 7\right)\cdot 13^{3} + \left(7 a^{4} + 3 a^{3} + 11 a + 11\right)\cdot 13^{4} + \left(3 a^{5} + 3 a^{4} + 5 a^{3} + 10 a^{2} + 6\right)\cdot 13^{5} + \left(a^{5} + 7 a^{4} + a^{3} + 5 a^{2} + 11 a + 4\right)\cdot 13^{6} +O(13^{7})\) Copy content Toggle raw display
$r_{ 3 }$ $=$ \( 4 a^{5} + 8 a^{4} + a^{3} + 5 a^{2} + 5 a + 5 + \left(12 a^{5} + 12 a^{4} + 12 a^{3} + 3 a^{2} + 11 a + 1\right)\cdot 13 + \left(3 a^{5} + 3 a^{4} + 7 a^{3} + 7 a^{2} + a + 3\right)\cdot 13^{2} + \left(7 a^{5} + 5 a^{4} + 10 a^{3} + 6 a^{2} + 11 a + 7\right)\cdot 13^{3} + \left(8 a^{5} + 8 a^{4} + 6 a^{3} + 5 a^{2} + a + 9\right)\cdot 13^{4} + \left(10 a^{5} + 3 a^{4} + 11 a^{3} + 8 a^{2} + 3 a + 8\right)\cdot 13^{5} + \left(7 a^{5} + 6 a^{4} + 8 a^{3} + 5 a^{2} + a + 12\right)\cdot 13^{6} +O(13^{7})\) Copy content Toggle raw display
$r_{ 4 }$ $=$ \( 4 a^{5} + 6 a^{4} + 11 a^{3} + 6 a + 10 + \left(10 a^{5} + 7 a^{4} + 10 a^{3} + a^{2} + 12 a + 12\right)\cdot 13 + \left(3 a^{5} + 9 a^{4} + 7 a^{3} + 3 a^{2} + 10 a + 11\right)\cdot 13^{2} + \left(9 a^{4} + 6 a^{3} + 12 a^{2} + 5 a\right)\cdot 13^{3} + \left(8 a^{5} + 11 a^{4} + 3 a^{3} + 9 a^{2} + 5 a + 6\right)\cdot 13^{4} + \left(12 a^{5} + 8 a^{4} + 11 a^{3} + 12 a^{2} + 11 a + 5\right)\cdot 13^{5} + \left(7 a^{5} + 5 a^{4} + 5 a^{3} + 9 a^{2} + a + 5\right)\cdot 13^{6} +O(13^{7})\) Copy content Toggle raw display
$r_{ 5 }$ $=$ \( a^{4} + 11 a^{3} + 12 a^{2} + 8 a + 6 + \left(10 a^{5} + 6 a^{4} + 3 a^{2} + 3 a + 10\right)\cdot 13 + \left(11 a^{5} + 3 a^{4} + 3 a^{3} + 5 a^{2} + 11 a + 7\right)\cdot 13^{2} + \left(a^{5} + 8 a^{4} + a + 5\right)\cdot 13^{3} + \left(3 a^{5} + 5 a^{4} + 12 a^{3} + 11 a^{2} + 10 a + 2\right)\cdot 13^{4} + \left(7 a^{5} + 4 a^{4} + 2 a^{3} + a^{2} + 9 a + 5\right)\cdot 13^{5} + \left(4 a^{5} + a^{4} + 11 a^{3} + 7 a^{2} + 9 a + 12\right)\cdot 13^{6} +O(13^{7})\) Copy content Toggle raw display
$r_{ 6 }$ $=$ \( 4 a^{5} + 4 a^{4} + 9 a^{3} + 9 a^{2} + 12 a + 7 + \left(11 a^{5} + 6 a^{4} + 11 a^{3} + 8 a^{2} + 10 a + 2\right)\cdot 13 + \left(6 a^{5} + 12 a^{2} + 9 a + 8\right)\cdot 13^{2} + \left(a^{5} + 4 a^{4} + 9 a^{3} + 11 a^{2} + 9 a + 6\right)\cdot 13^{3} + \left(12 a^{5} + 7 a^{4} + 7 a^{3} + 10 a^{2} + 12\right)\cdot 13^{4} + \left(3 a^{5} + 9 a^{4} + a^{3} + 4 a^{2} + 8 a + 7\right)\cdot 13^{5} + \left(9 a^{5} + 5 a^{4} + 12 a^{3} + 4 a^{2} + 8 a + 1\right)\cdot 13^{6} +O(13^{7})\) Copy content Toggle raw display
$r_{ 7 }$ $=$ \( 10 a^{5} + 2 a^{4} + 6 a^{3} + 10 a^{2} + 9 a + 2 + \left(5 a^{4} + 9 a^{3} + 7 a^{2} + 6 a + 1\right)\cdot 13 + \left(3 a^{5} + 3 a^{4} + 12 a^{3} + 2 a^{2} + a + 6\right)\cdot 13^{2} + \left(3 a^{4} + a^{3} + 8 a^{2} + 3 a + 3\right)\cdot 13^{3} + \left(8 a^{5} + a^{4} + 4 a^{3} + 11 a^{2} + 12 a + 10\right)\cdot 13^{4} + \left(8 a^{5} + 10 a^{4} + a^{3} + 4 a^{2} + a + 5\right)\cdot 13^{5} + \left(2 a^{5} + 5 a^{4} + 9 a^{3} + 7 a^{2} + 11 a + 10\right)\cdot 13^{6} +O(13^{7})\) Copy content Toggle raw display
$r_{ 8 }$ $=$ \( 11 a^{3} + 10 a^{2} + 7 a + 3 + \left(9 a^{5} + 5 a^{4} + 10 a^{3} + 11 a^{2} + 2\right)\cdot 13 + \left(7 a^{5} + 7 a^{4} + a^{3} + 9 a^{2} + 12 a + 8\right)\cdot 13^{2} + \left(8 a^{5} + 3 a^{4} + 10 a^{3} + 9 a^{2} + 2 a + 12\right)\cdot 13^{3} + \left(3 a^{4} + 11 a^{3} + 6 a^{2} + 6 a + 10\right)\cdot 13^{4} + \left(a^{5} + 12 a^{4} + 3 a^{3} + 11 a^{2} + 11 a + 12\right)\cdot 13^{5} + \left(9 a^{5} + 6 a^{4} + 11 a^{3} + 7 a^{2} + 12\right)\cdot 13^{6} +O(13^{7})\) Copy content Toggle raw display
$r_{ 9 }$ $=$ \( 4 a^{5} + 6 a^{4} + 6 a^{3} + 12 a^{2} + 4 a + 11 + \left(9 a^{3} + 3 a^{2} + 6 a + 5\right)\cdot 13 + \left(5 a^{5} + 5 a^{4} + 3 a^{3} + 4 a^{2} + 7 a + 8\right)\cdot 13^{2} + \left(6 a^{5} + 10 a^{4} + 6 a^{3} + 3 a^{2} + 7 a + 3\right)\cdot 13^{3} + \left(2 a^{4} + 9 a^{3} + 8 a^{2} + 4 a + 5\right)\cdot 13^{4} + \left(3 a^{5} + a^{4} + 11 a^{3} + 3 a^{2} + 2 a + 4\right)\cdot 13^{5} + \left(a^{5} + 6 a^{4} + 8 a^{3} + 5 a^{2} + 5 a + 7\right)\cdot 13^{6} +O(13^{7})\) Copy content Toggle raw display
$r_{ 10 }$ $=$ \( 5 a^{5} + a^{4} + 3 a^{3} + 12 a^{2} + 9 a + 1 + \left(2 a^{5} + 7 a^{4} + 2 a^{3} + 3 a + 9\right)\cdot 13 + \left(2 a^{5} + 8 a^{4} + 4 a^{3} + 6 a^{2} + a + 1\right)\cdot 13^{2} + \left(4 a^{5} + 3 a^{4} + 6 a^{3} + 7 a^{2} + 5 a + 12\right)\cdot 13^{3} + \left(5 a^{5} + 10 a^{4} + 11 a^{3} + 9 a^{2} + 10 a + 3\right)\cdot 13^{4} + \left(11 a^{5} + 12 a^{4} + 12 a^{3} + 12 a^{2} + a + 9\right)\cdot 13^{5} + \left(8 a^{5} + 4 a^{3} + 2 a^{2} + 3 a + 11\right)\cdot 13^{6} +O(13^{7})\) Copy content Toggle raw display
$r_{ 11 }$ $=$ \( 3 a^{5} + 11 a^{4} + 9 a^{3} + 6 a^{2} + 10 a + 8 + \left(3 a^{5} + 2 a^{4} + 5 a^{3} + 6 a^{2} + 5 a + 9\right)\cdot 13 + \left(2 a^{5} + 2 a^{4} + 11 a^{3} + 12 a + 11\right)\cdot 13^{2} + \left(4 a^{5} + 6 a^{4} + 8 a^{2} + 6 a + 9\right)\cdot 13^{3} + \left(4 a^{5} + 8 a^{4} + 10 a^{3} + 7 a^{2} + 7 a + 4\right)\cdot 13^{4} + \left(3 a^{5} + 3 a^{4} + 7 a^{3} + 9 a^{2} + 12 a + 7\right)\cdot 13^{5} + \left(a^{5} + 5 a^{3} + 10 a^{2} + 2\right)\cdot 13^{6} +O(13^{7})\) Copy content Toggle raw display
$r_{ 12 }$ $=$ \( 5 a^{5} + a^{4} + 9 a^{3} + a^{2} + 3 a + 5 + \left(2 a^{5} + 5 a^{4} + 5 a^{3} + 8 a^{2} + 7 a + 7\right)\cdot 13 + \left(4 a^{5} + 11 a^{4} + a^{3} + 5 a^{2} + 7 a + 5\right)\cdot 13^{2} + \left(6 a^{5} + 5 a^{4} + 10 a^{2} + 12 a + 8\right)\cdot 13^{3} + \left(4 a^{5} + 11 a^{4} + 7 a^{2} + 2 a + 1\right)\cdot 13^{4} + \left(10 a^{5} + 2 a^{4} + 3 a^{3} + 9 a^{2} + 12 a + 3\right)\cdot 13^{5} + \left(3 a^{5} + a^{4} + 11 a^{3} + 10 a^{2} + 5 a\right)\cdot 13^{6} +O(13^{7})\) Copy content Toggle raw display

Generators of the action on the roots $r_1, \ldots, r_{ 12 }$

Cycle notation
$(1,9,2,12,5,4)(3,7,6,8,10,11)$
$(1,2,5)(3,6,10)(4,12,9)(7,11,8)$
$(4,9,12)(7,8,11)$
$(1,3)(2,6)(4,11)(5,10)(7,9)(8,12)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 12 }$ Character valueComplex conjugation
$1$$1$$()$$2$
$1$$2$$(1,3)(2,6)(4,11)(5,10)(7,9)(8,12)$$-2$
$3$$2$$(1,12)(2,4)(3,8)(5,9)(6,11)(7,10)$$0$
$3$$2$$(1,8)(2,11)(3,12)(4,6)(5,7)(9,10)$$0$
$1$$3$$(1,2,5)(3,6,10)(4,9,12)(7,8,11)$$2 \zeta_{3}$
$1$$3$$(1,5,2)(3,10,6)(4,12,9)(7,11,8)$$-2 \zeta_{3} - 2$
$2$$3$$(1,2,5)(3,6,10)(4,12,9)(7,11,8)$$-1$
$2$$3$$(4,9,12)(7,8,11)$$\zeta_{3} + 1$
$2$$3$$(4,12,9)(7,11,8)$$-\zeta_{3}$
$1$$6$$(1,10,2,3,5,6)(4,8,9,11,12,7)$$2 \zeta_{3} + 2$
$1$$6$$(1,6,5,3,2,10)(4,7,12,11,9,8)$$-2 \zeta_{3}$
$2$$6$$(1,6,5,3,2,10)(4,8,9,11,12,7)$$1$
$2$$6$$(1,3)(2,6)(4,7,12,11,9,8)(5,10)$$-\zeta_{3} - 1$
$2$$6$$(1,3)(2,6)(4,8,9,11,12,7)(5,10)$$\zeta_{3}$
$3$$6$$(1,9,2,12,5,4)(3,7,6,8,10,11)$$0$
$3$$6$$(1,4,5,12,2,9)(3,11,10,8,6,7)$$0$
$3$$6$$(1,7,2,8,5,11)(3,9,6,12,10,4)$$0$
$3$$6$$(1,11,5,8,2,7)(3,4,10,12,6,9)$$0$