Properties

Label 2.2320.8t17.g.b
Dimension $2$
Group $C_4\wr C_2$
Conductor $2320$
Root number not computed
Indicator $0$

Related objects

Downloads

Learn more

Basic invariants

Dimension: $2$
Group: $C_4\wr C_2$
Conductor: \(2320\)\(\medspace = 2^{4} \cdot 5 \cdot 29 \)
Artin stem field: Galois closure of 8.4.22632992000.1
Galois orbit size: $2$
Smallest permutation container: $C_4\wr C_2$
Parity: odd
Determinant: 1.145.4t1.b.b
Projective image: $D_4$
Projective stem field: Galois closure of 4.0.3625.1

Defining polynomial

$f(x)$$=$ \( x^{8} + 4x^{6} - 18x^{4} - 15x^{2} + 5 \) Copy content Toggle raw display .

The roots of $f$ are computed in $\Q_{ 431 }$ to precision 10.

Roots:
$r_{ 1 }$ $=$ \( 23 + 315\cdot 431^{2} + 16\cdot 431^{3} + 196\cdot 431^{4} + 419\cdot 431^{5} + 417\cdot 431^{6} + 297\cdot 431^{7} + 95\cdot 431^{8} + 177\cdot 431^{9} +O(431^{10})\) Copy content Toggle raw display
$r_{ 2 }$ $=$ \( 176 + 250\cdot 431 + 170\cdot 431^{2} + 176\cdot 431^{3} + 337\cdot 431^{4} + 96\cdot 431^{5} + 408\cdot 431^{6} + 277\cdot 431^{7} + 347\cdot 431^{8} + 393\cdot 431^{9} +O(431^{10})\) Copy content Toggle raw display
$r_{ 3 }$ $=$ \( 179 + 101\cdot 431 + 288\cdot 431^{2} + 161\cdot 431^{3} + 233\cdot 431^{4} + 382\cdot 431^{5} + 291\cdot 431^{6} + 226\cdot 431^{7} + 360\cdot 431^{8} + 67\cdot 431^{9} +O(431^{10})\) Copy content Toggle raw display
$r_{ 4 }$ $=$ \( 184 + 93\cdot 431 + 214\cdot 431^{2} + 380\cdot 431^{3} + 203\cdot 431^{4} + 396\cdot 431^{5} + 360\cdot 431^{6} + 36\cdot 431^{7} + 185\cdot 431^{8} + 419\cdot 431^{9} +O(431^{10})\) Copy content Toggle raw display
$r_{ 5 }$ $=$ \( 247 + 337\cdot 431 + 216\cdot 431^{2} + 50\cdot 431^{3} + 227\cdot 431^{4} + 34\cdot 431^{5} + 70\cdot 431^{6} + 394\cdot 431^{7} + 245\cdot 431^{8} + 11\cdot 431^{9} +O(431^{10})\) Copy content Toggle raw display
$r_{ 6 }$ $=$ \( 252 + 329\cdot 431 + 142\cdot 431^{2} + 269\cdot 431^{3} + 197\cdot 431^{4} + 48\cdot 431^{5} + 139\cdot 431^{6} + 204\cdot 431^{7} + 70\cdot 431^{8} + 363\cdot 431^{9} +O(431^{10})\) Copy content Toggle raw display
$r_{ 7 }$ $=$ \( 255 + 180\cdot 431 + 260\cdot 431^{2} + 254\cdot 431^{3} + 93\cdot 431^{4} + 334\cdot 431^{5} + 22\cdot 431^{6} + 153\cdot 431^{7} + 83\cdot 431^{8} + 37\cdot 431^{9} +O(431^{10})\) Copy content Toggle raw display
$r_{ 8 }$ $=$ \( 408 + 430\cdot 431 + 115\cdot 431^{2} + 414\cdot 431^{3} + 234\cdot 431^{4} + 11\cdot 431^{5} + 13\cdot 431^{6} + 133\cdot 431^{7} + 335\cdot 431^{8} + 253\cdot 431^{9} +O(431^{10})\) Copy content Toggle raw display

Generators of the action on the roots $r_1, \ldots, r_{ 8 }$

Cycle notation
$(1,8)(2,7)(3,6)(4,5)$
$(1,4,8,5)(2,6,7,3)$
$(1,7,4,6,8,2,5,3)$
$(2,3,7,6)$
$(2,7)(3,6)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 8 }$ Character valueComplex conjugation
$1$$1$$()$$2$
$1$$2$$(1,8)(2,7)(3,6)(4,5)$$-2$
$2$$2$$(2,7)(3,6)$$0$
$4$$2$$(1,3)(2,5)(4,7)(6,8)$$0$
$1$$4$$(1,4,8,5)(2,3,7,6)$$2 \zeta_{4}$
$1$$4$$(1,5,8,4)(2,6,7,3)$$-2 \zeta_{4}$
$2$$4$$(1,4,8,5)(2,6,7,3)$$0$
$2$$4$$(2,3,7,6)$$\zeta_{4} + 1$
$2$$4$$(2,6,7,3)$$-\zeta_{4} + 1$
$2$$4$$(1,8)(2,6,7,3)(4,5)$$-\zeta_{4} - 1$
$2$$4$$(1,8)(2,3,7,6)(4,5)$$\zeta_{4} - 1$
$4$$4$$(1,6,8,3)(2,5,7,4)$$0$
$4$$8$$(1,7,4,6,8,2,5,3)$$0$
$4$$8$$(1,6,5,7,8,3,4,2)$$0$