Properties

Label 2.2320.8t17.c.a
Dimension $2$
Group $C_4\wr C_2$
Conductor $2320$
Root number not computed
Indicator $0$

Related objects

Downloads

Learn more

Basic invariants

Dimension: $2$
Group: $C_4\wr C_2$
Conductor: \(2320\)\(\medspace = 2^{4} \cdot 5 \cdot 29 \)
Artin stem field: Galois closure of 8.4.3902240000.1
Galois orbit size: $2$
Smallest permutation container: $C_4\wr C_2$
Parity: odd
Determinant: 1.145.4t1.a.a
Projective image: $D_4$
Projective stem field: Galois closure of 4.0.121945.1

Defining polynomial

$f(x)$$=$ \( x^{8} + 3x^{6} - 15x^{4} - 29x^{2} + 29 \) Copy content Toggle raw display .

The roots of $f$ are computed in $\Q_{ 509 }$ to precision 9.

Roots:
$r_{ 1 }$ $=$ \( 107 + 444\cdot 509 + 270\cdot 509^{2} + 308\cdot 509^{3} + 184\cdot 509^{4} + 119\cdot 509^{5} + 5\cdot 509^{6} + 205\cdot 509^{7} + 57\cdot 509^{8} +O(509^{9})\) Copy content Toggle raw display
$r_{ 2 }$ $=$ \( 125 + 70\cdot 509 + 193\cdot 509^{2} + 376\cdot 509^{3} + 236\cdot 509^{4} + 119\cdot 509^{5} + 188\cdot 509^{6} + 211\cdot 509^{7} + 253\cdot 509^{8} +O(509^{9})\) Copy content Toggle raw display
$r_{ 3 }$ $=$ \( 183 + 37\cdot 509 + 24\cdot 509^{2} + 458\cdot 509^{3} + 315\cdot 509^{4} + 466\cdot 509^{5} + 343\cdot 509^{6} + 288\cdot 509^{7} + 49\cdot 509^{8} +O(509^{9})\) Copy content Toggle raw display
$r_{ 4 }$ $=$ \( 243 + 401\cdot 509 + 428\cdot 509^{2} + 158\cdot 509^{3} + 474\cdot 509^{4} + 413\cdot 509^{5} + 398\cdot 509^{6} + 449\cdot 509^{7} + 109\cdot 509^{8} +O(509^{9})\) Copy content Toggle raw display
$r_{ 5 }$ $=$ \( 266 + 107\cdot 509 + 80\cdot 509^{2} + 350\cdot 509^{3} + 34\cdot 509^{4} + 95\cdot 509^{5} + 110\cdot 509^{6} + 59\cdot 509^{7} + 399\cdot 509^{8} +O(509^{9})\) Copy content Toggle raw display
$r_{ 6 }$ $=$ \( 326 + 471\cdot 509 + 484\cdot 509^{2} + 50\cdot 509^{3} + 193\cdot 509^{4} + 42\cdot 509^{5} + 165\cdot 509^{6} + 220\cdot 509^{7} + 459\cdot 509^{8} +O(509^{9})\) Copy content Toggle raw display
$r_{ 7 }$ $=$ \( 384 + 438\cdot 509 + 315\cdot 509^{2} + 132\cdot 509^{3} + 272\cdot 509^{4} + 389\cdot 509^{5} + 320\cdot 509^{6} + 297\cdot 509^{7} + 255\cdot 509^{8} +O(509^{9})\) Copy content Toggle raw display
$r_{ 8 }$ $=$ \( 402 + 64\cdot 509 + 238\cdot 509^{2} + 200\cdot 509^{3} + 324\cdot 509^{4} + 389\cdot 509^{5} + 503\cdot 509^{6} + 303\cdot 509^{7} + 451\cdot 509^{8} +O(509^{9})\) Copy content Toggle raw display

Generators of the action on the roots $r_1, \ldots, r_{ 8 }$

Cycle notation
$(1,8)(2,7)(3,6)(4,5)$
$(1,7,8,2)(3,5,6,4)$
$(1,5)(2,3)(4,8)(6,7)$
$(1,6,7,4,8,3,2,5)$
$(1,8)(2,7)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 8 }$ Character valueComplex conjugation
$1$$1$$()$$2$
$1$$2$$(1,8)(2,7)(3,6)(4,5)$$-2$
$2$$2$$(1,8)(2,7)$$0$
$4$$2$$(1,5)(2,3)(4,8)(6,7)$$0$
$1$$4$$(1,7,8,2)(3,5,6,4)$$2 \zeta_{4}$
$1$$4$$(1,2,8,7)(3,4,6,5)$$-2 \zeta_{4}$
$2$$4$$(1,2,8,7)(3,5,6,4)$$0$
$2$$4$$(1,7,8,2)$$\zeta_{4} + 1$
$2$$4$$(1,2,8,7)$$-\zeta_{4} + 1$
$2$$4$$(1,8)(2,7)(3,5,6,4)$$\zeta_{4} - 1$
$2$$4$$(1,8)(2,7)(3,4,6,5)$$-\zeta_{4} - 1$
$4$$4$$(1,5,8,4)(2,3,7,6)$$0$
$4$$8$$(1,5,2,3,8,4,7,6)$$0$
$4$$8$$(1,3,7,5,8,6,2,4)$$0$