Properties

Label 2.2268.6t5.l.b
Dimension $2$
Group $S_3\times C_3$
Conductor $2268$
Root number not computed
Indicator $0$

Related objects

Downloads

Learn more

Basic invariants

Dimension: $2$
Group: $S_3\times C_3$
Conductor: \(2268\)\(\medspace = 2^{2} \cdot 3^{4} \cdot 7 \)
Artin stem field: Galois closure of 6.0.432081216.3
Galois orbit size: $2$
Smallest permutation container: $S_3\times C_3$
Parity: odd
Determinant: 1.252.6t1.j.b
Projective image: $S_3$
Projective stem field: Galois closure of 3.1.756.1

Defining polynomial

$f(x)$$=$ \( x^{6} - 12x^{4} - 12x^{3} + 36x^{2} + 72x + 120 \) Copy content Toggle raw display .

The roots of $f$ are computed in an extension of $\Q_{ 53 }$ to precision 6.

Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 53 }$: \( x^{2} + 49x + 2 \) Copy content Toggle raw display

Roots:
$r_{ 1 }$ $=$ \( 51 a + 10 + \left(39 a + 39\right)\cdot 53 + \left(42 a + 43\right)\cdot 53^{2} + \left(28 a + 23\right)\cdot 53^{3} + \left(18 a + 48\right)\cdot 53^{4} + \left(7 a + 31\right)\cdot 53^{5} +O(53^{6})\) Copy content Toggle raw display
$r_{ 2 }$ $=$ \( 2 a + 2 + \left(13 a + 42\right)\cdot 53 + \left(10 a + 15\right)\cdot 53^{2} + \left(24 a + 43\right)\cdot 53^{3} + \left(34 a + 40\right)\cdot 53^{4} + \left(45 a + 42\right)\cdot 53^{5} +O(53^{6})\) Copy content Toggle raw display
$r_{ 3 }$ $=$ \( 17 a + \left(41 a + 3\right)\cdot 53 + \left(47 a + 20\right)\cdot 53^{2} + \left(40 a + 15\right)\cdot 53^{3} + \left(27 a + 39\right)\cdot 53^{4} + \left(37 a + 1\right)\cdot 53^{5} +O(53^{6})\) Copy content Toggle raw display
$r_{ 4 }$ $=$ \( 36 a + 15 + \left(11 a + 45\right)\cdot 53 + \left(5 a + 10\right)\cdot 53^{2} + \left(12 a + 25\right)\cdot 53^{3} + \left(25 a + 3\right)\cdot 53^{4} + \left(15 a + 18\right)\cdot 53^{5} +O(53^{6})\) Copy content Toggle raw display
$r_{ 5 }$ $=$ \( 15 a + 36 + \left(28 a + 18\right)\cdot 53 + \left(37 a + 26\right)\cdot 53^{2} + \left(16 a + 37\right)\cdot 53^{3} + \left(46 a + 8\right)\cdot 53^{4} + \left(44 a + 45\right)\cdot 53^{5} +O(53^{6})\) Copy content Toggle raw display
$r_{ 6 }$ $=$ \( 38 a + 43 + \left(24 a + 10\right)\cdot 53 + \left(15 a + 42\right)\cdot 53^{2} + \left(36 a + 13\right)\cdot 53^{3} + \left(6 a + 18\right)\cdot 53^{4} + \left(8 a + 19\right)\cdot 53^{5} +O(53^{6})\) Copy content Toggle raw display

Generators of the action on the roots $r_1, \ldots, r_{ 6 }$

Cycle notation
$(2,5,4)$
$(1,2)(3,4)(5,6)$
$(1,3,6)(2,5,4)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 6 }$ Character valueComplex conjugation
$1$$1$$()$$2$
$3$$2$$(1,2)(3,4)(5,6)$$0$
$1$$3$$(1,6,3)(2,5,4)$$-2 \zeta_{3} - 2$
$1$$3$$(1,3,6)(2,4,5)$$2 \zeta_{3}$
$2$$3$$(1,3,6)(2,5,4)$$-1$
$2$$3$$(2,5,4)$$-\zeta_{3}$
$2$$3$$(2,4,5)$$\zeta_{3} + 1$
$3$$6$$(1,5,6,4,3,2)$$0$
$3$$6$$(1,2,3,4,6,5)$$0$