Properties

Label 2.2268.6t5.i.a
Dimension $2$
Group $S_3\times C_3$
Conductor $2268$
Root number not computed
Indicator $0$

Related objects

Downloads

Learn more

Basic invariants

Dimension: $2$
Group: $S_3\times C_3$
Conductor: \(2268\)\(\medspace = 2^{2} \cdot 3^{4} \cdot 7 \)
Artin stem field: Galois closure of 6.0.15431472.2
Galois orbit size: $2$
Smallest permutation container: $S_3\times C_3$
Parity: odd
Determinant: 1.63.6t1.b.a
Projective image: $S_3$
Projective stem field: Galois closure of 3.1.588.1

Defining polynomial

$f(x)$$=$ \( x^{6} - 8x^{3} + 28 \) Copy content Toggle raw display .

The roots of $f$ are computed in an extension of $\Q_{ 47 }$ to precision 7.

Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 47 }$: \( x^{2} + 45x + 5 \) Copy content Toggle raw display

Roots:
$r_{ 1 }$ $=$ \( 31 a + 12 + \left(45 a + 27\right)\cdot 47 + \left(22 a + 1\right)\cdot 47^{2} + \left(39 a + 3\right)\cdot 47^{3} + 4 a\cdot 47^{4} + 45\cdot 47^{5} + \left(12 a + 29\right)\cdot 47^{6} +O(47^{7})\) Copy content Toggle raw display
$r_{ 2 }$ $=$ \( 27 a + 18 + \left(14 a + 14\right)\cdot 47 + \left(10 a + 37\right)\cdot 47^{2} + \left(18 a + 32\right)\cdot 47^{3} + \left(15 a + 23\right)\cdot 47^{4} + \left(23 a + 26\right)\cdot 47^{5} + \left(35 a + 25\right)\cdot 47^{6} +O(47^{7})\) Copy content Toggle raw display
$r_{ 3 }$ $=$ \( 20 a + 25 + \left(32 a + 16\right)\cdot 47 + \left(36 a + 43\right)\cdot 47^{2} + \left(28 a + 11\right)\cdot 47^{3} + \left(31 a + 36\right)\cdot 47^{4} + \left(23 a + 10\right)\cdot 47^{5} + \left(11 a + 26\right)\cdot 47^{6} +O(47^{7})\) Copy content Toggle raw display
$r_{ 4 }$ $=$ \( 16 a + 27 + \left(a + 40\right)\cdot 47 + \left(24 a + 1\right)\cdot 47^{2} + \left(7 a + 12\right)\cdot 47^{3} + \left(42 a + 17\right)\cdot 47^{4} + \left(46 a + 40\right)\cdot 47^{5} + \left(34 a + 6\right)\cdot 47^{6} +O(47^{7})\) Copy content Toggle raw display
$r_{ 5 }$ $=$ \( 43 a + 10 + \left(15 a + 3\right)\cdot 47 + \left(34 a + 2\right)\cdot 47^{2} + \left(25 a + 32\right)\cdot 47^{3} + \left(10 a + 10\right)\cdot 47^{4} + \left(23 a + 38\right)\cdot 47^{5} + \left(23 a + 37\right)\cdot 47^{6} +O(47^{7})\) Copy content Toggle raw display
$r_{ 6 }$ $=$ \( 4 a + 2 + \left(31 a + 39\right)\cdot 47 + \left(12 a + 7\right)\cdot 47^{2} + \left(21 a + 2\right)\cdot 47^{3} + \left(36 a + 6\right)\cdot 47^{4} + \left(23 a + 27\right)\cdot 47^{5} + \left(23 a + 14\right)\cdot 47^{6} +O(47^{7})\) Copy content Toggle raw display

Generators of the action on the roots $r_1, \ldots, r_{ 6 }$

Cycle notation
$(1,3,5)(2,6,4)$
$(1,5,3)$
$(1,2)(3,6)(4,5)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 6 }$ Character valueComplex conjugation
$1$$1$$()$$2$
$3$$2$$(1,2)(3,6)(4,5)$$0$
$1$$3$$(1,3,5)(2,6,4)$$2 \zeta_{3}$
$1$$3$$(1,5,3)(2,4,6)$$-2 \zeta_{3} - 2$
$2$$3$$(1,5,3)$$-\zeta_{3}$
$2$$3$$(1,3,5)$$\zeta_{3} + 1$
$2$$3$$(1,3,5)(2,4,6)$$-1$
$3$$6$$(1,6,5,2,3,4)$$0$
$3$$6$$(1,4,3,2,5,6)$$0$