Basic invariants
| Dimension: | $2$ |
| Group: | $C_6\times S_3$ |
| Conductor: | \(2100\)\(\medspace = 2^{2} \cdot 3 \cdot 5^{2} \cdot 7 \) |
| Artin number field: | Galois closure of 12.0.7001316000000.2 |
| Galois orbit size: | $2$ |
| Smallest permutation container: | $C_6\times S_3$ |
| Parity: | odd |
| Projective image: | $S_3$ |
| Projective field: | Galois closure of 3.1.588.1 |
Galois action
Roots of defining polynomial
The roots of $f$ are computed in an extension of $\Q_{ 13 }$ to precision 8.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 13 }$:
\( x^{6} + 10x^{3} + 11x^{2} + 11x + 2 \)
Roots:
| $r_{ 1 }$ | $=$ |
\( 2 a^{5} + 4 a^{4} + a^{3} + 4 a^{2} + 12 a + 8 + \left(a^{5} + 6 a^{4} + 7 a^{3} + 7 a^{2} + 5 a + 9\right)\cdot 13 + \left(12 a^{5} + 11 a^{4} + 3 a^{3} + 8 a^{2} + a + 3\right)\cdot 13^{2} + \left(11 a^{5} + 3 a^{4} + 9 a^{3} + 9 a^{2} + a + 10\right)\cdot 13^{3} + \left(11 a^{4} + 11 a^{3} + 5 a^{2} + 8 a + 3\right)\cdot 13^{4} + \left(4 a^{5} + 12 a^{4} + 8 a^{3} + 8 a^{2} + 2 a + 3\right)\cdot 13^{5} + \left(2 a^{5} + 4 a^{4} + 12 a^{3} + 12 a + 9\right)\cdot 13^{6} + \left(10 a^{5} + 5 a^{4} + a^{3} + 8 a^{2} + 6 a + 4\right)\cdot 13^{7} +O(13^{8})\)
|
| $r_{ 2 }$ | $=$ |
\( 11 a^{5} + a^{4} + 6 a^{3} + 4 a^{2} + 12 a + 9 + \left(a^{4} + 3 a + 4\right)\cdot 13 + \left(9 a^{5} + 10 a^{4} + 12 a^{3} + 11 a^{2} + a + 10\right)\cdot 13^{2} + \left(a^{5} + 11 a^{4} + 2 a^{3} + 7 a^{2} + 10 a + 9\right)\cdot 13^{3} + \left(10 a^{4} + 2 a^{3} + 7 a^{2} + 9 a + 4\right)\cdot 13^{4} + \left(10 a^{5} + 9 a^{4} + 7 a^{3} + 3 a^{2} + 5 a + 7\right)\cdot 13^{5} + \left(4 a^{5} + 12 a^{4} + a^{3} + 12 a^{2} + 6 a\right)\cdot 13^{6} + \left(a^{5} + 6 a^{4} + 7 a^{3} + 8 a^{2} + 8 a + 9\right)\cdot 13^{7} +O(13^{8})\)
|
| $r_{ 3 }$ | $=$ |
\( 9 a^{5} + 5 a^{4} + 11 a^{3} + 6 a^{2} + a + 7 + \left(11 a^{5} + 8 a^{4} + 10 a^{3} + 6 a^{2} + 6\right)\cdot 13 + \left(11 a^{5} + 2 a^{4} + 10 a^{3} + 2 a^{2} + 4 a + 12\right)\cdot 13^{2} + \left(10 a^{5} + 6 a^{3} + 7 a^{2} + 2 a + 1\right)\cdot 13^{3} + \left(2 a^{5} + 8 a^{4} + 10 a^{3} + 11 a^{2} + 6 a + 6\right)\cdot 13^{4} + \left(9 a^{5} + 7 a^{3} + 8 a^{2} + 8\right)\cdot 13^{5} + \left(11 a^{5} + 10 a^{4} + a^{3} + 5 a^{2} + 12 a + 10\right)\cdot 13^{6} + \left(10 a^{5} + 10 a^{4} + 5 a^{3} + 2 a^{2} + 5 a + 8\right)\cdot 13^{7} +O(13^{8})\)
|
| $r_{ 4 }$ | $=$ |
\( 11 a^{5} + 6 a^{4} + 5 a^{2} + 4 a + 8 + \left(9 a^{5} + 3 a^{4} + 10 a^{3} + 4 a^{2} + a + 5\right)\cdot 13 + \left(4 a^{5} + 3 a^{4} + 5 a^{2} + 7\right)\cdot 13^{2} + \left(8 a^{5} + 6 a^{4} + 12 a^{3} + 4 a + 3\right)\cdot 13^{3} + \left(5 a^{5} + 7 a^{3} + 12 a^{2} + 11 a + 11\right)\cdot 13^{4} + \left(2 a^{5} + 10 a^{4} + 7 a^{3} + 5 a^{2} + 9 a + 7\right)\cdot 13^{5} + \left(4 a^{5} + 6 a^{4} + 8 a^{3} + 10 a^{2} + 7 a + 4\right)\cdot 13^{6} + \left(2 a^{5} + 3 a^{4} + 4 a^{3} + 5 a^{2} + 4 a\right)\cdot 13^{7} +O(13^{8})\)
|
| $r_{ 5 }$ | $=$ |
\( 4 a^{5} + 9 a^{4} + 6 a^{3} + 6 a^{2} + 9 a + 11 + \left(4 a^{5} + a^{4} + 9 a^{3} + 12 a^{2} + 4 a + 12\right)\cdot 13 + \left(10 a^{5} + 12 a^{4} + 7 a^{3} + 8 a^{2} + 11 a + 10\right)\cdot 13^{2} + \left(3 a^{5} + 6 a^{4} + 6 a^{3} + 12 a^{2} + 7 a + 10\right)\cdot 13^{3} + \left(4 a^{4} + a^{3} + 7 a^{2} + 9 a + 11\right)\cdot 13^{4} + \left(a^{5} + 11 a^{4} + 7 a^{3} + 6 a^{2} + 6 a + 12\right)\cdot 13^{5} + \left(6 a^{5} + 8 a^{4} + 8 a^{3} + 2 a^{2} + a + 8\right)\cdot 13^{6} + \left(3 a^{4} + 9 a^{3} + 8 a^{2} + 11 a + 11\right)\cdot 13^{7} +O(13^{8})\)
|
| $r_{ 6 }$ | $=$ |
\( 8 a^{5} + 6 a^{4} + 3 a^{3} + 12 a^{2} + a + 1 + \left(9 a^{5} + 11 a^{4} + a^{3} + 6 a^{2} + 11 a + 9\right)\cdot 13 + \left(8 a^{5} + 7 a^{4} + 6 a^{3} + 6 a^{2} + 5 a + 2\right)\cdot 13^{2} + \left(8 a^{5} + 11 a^{4} + 9 a^{3} + 9 a^{2} + 5 a + 1\right)\cdot 13^{3} + \left(a^{5} + 7 a^{4} + 10 a^{3} + 12 a^{2} + 11\right)\cdot 13^{4} + \left(a^{4} + 6 a^{3} + 12 a^{2} + 12\right)\cdot 13^{5} + \left(4 a^{5} + 5 a^{4} + 7 a^{2} + 3\right)\cdot 13^{6} + \left(10 a^{5} + 5 a^{4} + 5 a^{2} + 9\right)\cdot 13^{7} +O(13^{8})\)
|
| $r_{ 7 }$ | $=$ |
\( 12 a^{5} + 8 a^{4} + 7 a^{3} + 10 a^{2} + 7 a + 3 + \left(2 a^{5} + 6 a^{4} + 9 a^{3} + 10 a^{2} + 2 a + 12\right)\cdot 13 + \left(8 a^{5} + 2 a^{4} + 4 a^{3} + 9 a^{2} + 6 a + 5\right)\cdot 13^{2} + \left(12 a^{5} + 3 a^{4} + 6 a^{3} + 11 a^{2} + 11 a + 1\right)\cdot 13^{3} + \left(8 a^{5} + 8 a^{4} + 6 a^{3} + 4 a^{2} + 3\right)\cdot 13^{4} + \left(3 a^{5} + 5 a^{4} + 6 a^{3} + 12 a^{2} + 12 a + 6\right)\cdot 13^{5} + \left(7 a^{5} + a^{4} + 12 a^{3} + a^{2} + 3 a + 10\right)\cdot 13^{6} + \left(2 a^{5} + a^{3} + 8 a^{2} + 6 a + 8\right)\cdot 13^{7} +O(13^{8})\)
|
| $r_{ 8 }$ | $=$ |
\( 5 a^{5} + 9 a^{4} + 5 a^{3} + 12 a^{2} + 6 a + 12 + \left(9 a^{5} + 7 a^{3} + 12 a^{2} + 9 a + 12\right)\cdot 13 + \left(11 a^{5} + 12 a^{4} + 9 a^{3} + a^{2} + 7 a + 12\right)\cdot 13^{2} + \left(3 a^{5} + 10 a^{4} + 7 a^{3} + 12 a^{2} + 8 a + 10\right)\cdot 13^{3} + \left(10 a^{5} + 6 a^{4} + 11 a^{3} + 6 a^{2} + 7 a + 8\right)\cdot 13^{4} + \left(a^{5} + 10 a^{4} + 6 a^{3} + a\right)\cdot 13^{5} + \left(11 a^{5} + 3 a^{4} + 5 a^{3} + 10 a + 11\right)\cdot 13^{6} + \left(3 a^{5} + 11 a^{4} + 8 a^{3} + 6 a^{2} + 5 a + 2\right)\cdot 13^{7} +O(13^{8})\)
|
| $r_{ 9 }$ | $=$ |
\( 2 a^{5} + 10 a^{4} + 12 a^{3} + 5 a^{2} + 4 + \left(12 a^{5} + 11 a^{4} + 3 a^{3} + 2 a^{2} + 6 a + 5\right)\cdot 13 + \left(3 a^{5} + a^{4} + 3 a^{3} + 10 a^{2} + 2 a\right)\cdot 13^{2} + \left(12 a^{5} + 3 a^{2} + 2 a + 3\right)\cdot 13^{3} + \left(3 a^{4} + 4 a^{3} + 3 a^{2} + 2 a + 6\right)\cdot 13^{4} + \left(8 a^{5} + 9 a^{4} + 8 a^{3} + 10 a^{2} + 9 a + 9\right)\cdot 13^{5} + \left(6 a^{5} + 6 a^{4} + 6 a^{3} + 9 a^{2} + 3\right)\cdot 13^{6} + \left(8 a^{5} + 10 a^{4} + 5 a^{3} + 7 a^{2} + 9 a + 4\right)\cdot 13^{7} +O(13^{8})\)
|
| $r_{ 10 }$ | $=$ |
\( 9 a^{5} + 4 a^{3} + 2 a^{2} + 12 a + 9 + \left(a^{4} + a^{3} + a + 9\right)\cdot 13 + \left(7 a^{5} + 10 a^{4} + 4 a^{3} + a^{2} + a + 12\right)\cdot 13^{2} + \left(9 a^{5} + a^{4} + 5 a^{3} + 12 a^{2} + 9 a + 1\right)\cdot 13^{3} + \left(10 a^{5} + 12 a^{4} + 11 a^{3} + 8 a^{2} + 7 a + 9\right)\cdot 13^{4} + \left(2 a^{5} + 3 a^{4} + 12 a^{3} + 10 a^{2} + 6 a + 1\right)\cdot 13^{5} + \left(12 a^{5} + 2 a^{4} + 5 a^{3} + 12 a^{2} + 2 a + 2\right)\cdot 13^{6} + \left(9 a^{4} + 2 a^{3} + 9 a + 5\right)\cdot 13^{7} +O(13^{8})\)
|
| $r_{ 11 }$ | $=$ |
\( 4 a^{5} + 9 a^{4} + 6 a^{3} + 2 a^{2} + 11 + \left(12 a^{4} + 3 a^{3} + 12 a\right)\cdot 13 + \left(a^{5} + 8 a^{4} + 12 a^{3} + 11 a^{2} + 6 a + 1\right)\cdot 13^{2} + \left(7 a^{5} + 10 a^{4} + 7 a^{3} + 2 a^{2} + 8\right)\cdot 13^{3} + \left(5 a^{5} + 10 a^{4} + 3 a^{3} + 8 a^{2} + 2 a + 12\right)\cdot 13^{4} + \left(2 a^{5} + 3 a^{4} + 8 a^{3} + 9 a^{2} + 6 a + 8\right)\cdot 13^{5} + \left(11 a^{5} + 4 a^{4} + 7 a^{3} + 10 a^{2} + a + 4\right)\cdot 13^{6} + \left(2 a^{5} + a^{4} + 11 a^{3} + 12 a + 4\right)\cdot 13^{7} +O(13^{8})\)
|
| $r_{ 12 }$ | $=$ |
\( a^{5} + 11 a^{4} + 4 a^{3} + 10 a^{2} + a + 11 + \left(2 a^{5} + 12 a^{4} + 6 a + 1\right)\cdot 13 + \left(2 a^{5} + 7 a^{4} + 3 a^{3} + a^{2} + 3 a + 10\right)\cdot 13^{2} + \left(10 a^{4} + 3 a^{3} + a^{2} + 2 a + 1\right)\cdot 13^{3} + \left(4 a^{5} + 6 a^{4} + 9 a^{3} + a^{2} + 12 a + 2\right)\cdot 13^{4} + \left(6 a^{5} + 11 a^{4} + 2 a^{3} + a^{2} + 3 a + 11\right)\cdot 13^{5} + \left(9 a^{5} + 10 a^{4} + 6 a^{3} + 3 a^{2} + 6 a + 7\right)\cdot 13^{6} + \left(10 a^{5} + 9 a^{4} + 6 a^{3} + 2 a^{2} + 11 a + 8\right)\cdot 13^{7} +O(13^{8})\)
|
Generators of the action on the roots $r_1, \ldots, r_{ 12 }$
| Cycle notation |
Character values on conjugacy classes
| Size | Order | Action on $r_1, \ldots, r_{ 12 }$ | Character values | |
| $c1$ | $c2$ | |||
| $1$ | $1$ | $()$ | $2$ | $2$ |
| $1$ | $2$ | $(1,7)(2,8)(3,9)(4,10)(5,11)(6,12)$ | $-2$ | $-2$ |
| $3$ | $2$ | $(1,3)(2,5)(4,12)(6,10)(7,9)(8,11)$ | $0$ | $0$ |
| $3$ | $2$ | $(1,9)(2,11)(3,7)(4,6)(5,8)(10,12)$ | $0$ | $0$ |
| $1$ | $3$ | $(1,12,8)(2,7,6)(3,4,11)(5,9,10)$ | $-2 \zeta_{3} - 2$ | $2 \zeta_{3}$ |
| $1$ | $3$ | $(1,8,12)(2,6,7)(3,11,4)(5,10,9)$ | $2 \zeta_{3}$ | $-2 \zeta_{3} - 2$ |
| $2$ | $3$ | $(1,8,12)(2,6,7)$ | $\zeta_{3} + 1$ | $-\zeta_{3}$ |
| $2$ | $3$ | $(1,12,8)(2,7,6)$ | $-\zeta_{3}$ | $\zeta_{3} + 1$ |
| $2$ | $3$ | $(1,12,8)(2,7,6)(3,11,4)(5,10,9)$ | $-1$ | $-1$ |
| $1$ | $6$ | $(1,2,12,7,8,6)(3,5,4,9,11,10)$ | $-2 \zeta_{3}$ | $2 \zeta_{3} + 2$ |
| $1$ | $6$ | $(1,6,8,7,12,2)(3,10,11,9,4,5)$ | $2 \zeta_{3} + 2$ | $-2 \zeta_{3}$ |
| $2$ | $6$ | $(1,2,12,7,8,6)(3,9)(4,10)(5,11)$ | $-\zeta_{3} - 1$ | $\zeta_{3}$ |
| $2$ | $6$ | $(1,6,8,7,12,2)(3,9)(4,10)(5,11)$ | $\zeta_{3}$ | $-\zeta_{3} - 1$ |
| $2$ | $6$ | $(1,6,8,7,12,2)(3,5,4,9,11,10)$ | $1$ | $1$ |
| $3$ | $6$ | $(1,11,12,3,8,4)(2,10,7,5,6,9)$ | $0$ | $0$ |
| $3$ | $6$ | $(1,4,8,3,12,11)(2,9,6,5,7,10)$ | $0$ | $0$ |
| $3$ | $6$ | $(1,5,12,9,8,10)(2,4,7,11,6,3)$ | $0$ | $0$ |
| $3$ | $6$ | $(1,10,8,9,12,5)(2,3,6,11,7,4)$ | $0$ | $0$ |