Properties

Label 2.20164.24t22.b.b
Dimension $2$
Group $\textrm{GL(2,3)}$
Conductor $20164$
Root number not computed
Indicator $0$

Related objects

Downloads

Learn more

Basic invariants

Dimension: $2$
Group: $\textrm{GL(2,3)}$
Conductor: \(20164\)\(\medspace = 2^{2} \cdot 71^{2} \)
Artin stem field: Galois closure of 8.2.1626347584.1
Galois orbit size: $2$
Smallest permutation container: 24T22
Parity: odd
Determinant: 1.4.2t1.a.a
Projective image: $S_4$
Projective stem field: Galois closure of 4.2.20164.1

Defining polynomial

$f(x)$$=$ \( x^{8} - x^{7} - x^{6} - 4x^{5} + 6x^{4} - 4x^{3} - x^{2} - x + 1 \) Copy content Toggle raw display .

The roots of $f$ are computed in an extension of $\Q_{ 19 }$ to precision 7.

Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 19 }$: \( x^{2} + 18x + 2 \) Copy content Toggle raw display

Roots:
$r_{ 1 }$ $=$ \( 15 a + 14 + \left(9 a + 10\right)\cdot 19 + \left(5 a + 15\right)\cdot 19^{2} + \left(14 a + 6\right)\cdot 19^{3} + \left(6 a + 13\right)\cdot 19^{4} + \left(11 a + 7\right)\cdot 19^{5} + \left(4 a + 12\right)\cdot 19^{6} +O(19^{7})\) Copy content Toggle raw display
$r_{ 2 }$ $=$ \( 16 a + 12 + \left(a + 2\right)\cdot 19 + \left(6 a + 8\right)\cdot 19^{2} + \left(12 a + 15\right)\cdot 19^{3} + \left(8 a + 7\right)\cdot 19^{4} + \left(4 a + 18\right)\cdot 19^{5} + 9\cdot 19^{6} +O(19^{7})\) Copy content Toggle raw display
$r_{ 3 }$ $=$ \( 13 + 3\cdot 19 + 18\cdot 19^{2} + 9\cdot 19^{3} + 5\cdot 19^{4} + 7\cdot 19^{5} + 10\cdot 19^{6} +O(19^{7})\) Copy content Toggle raw display
$r_{ 4 }$ $=$ \( 14 a + 1 + \left(17 a + 9\right)\cdot 19 + 18\cdot 19^{2} + \left(5 a + 3\right)\cdot 19^{3} + \left(7 a + 17\right)\cdot 19^{4} + 11 a\cdot 19^{5} + \left(4 a + 5\right)\cdot 19^{6} +O(19^{7})\) Copy content Toggle raw display
$r_{ 5 }$ $=$ \( 3 a + 9 + \left(17 a + 7\right)\cdot 19 + \left(12 a + 12\right)\cdot 19^{2} + \left(6 a + 2\right)\cdot 19^{3} + \left(10 a + 4\right)\cdot 19^{4} + \left(14 a + 14\right)\cdot 19^{5} + \left(18 a + 5\right)\cdot 19^{6} +O(19^{7})\) Copy content Toggle raw display
$r_{ 6 }$ $=$ \( 3 + 5\cdot 19 + 9\cdot 19^{2} + 13\cdot 19^{3} + 2\cdot 19^{4} + 10\cdot 19^{5} + 9\cdot 19^{6} +O(19^{7})\) Copy content Toggle raw display
$r_{ 7 }$ $=$ \( 5 a + 15 + \left(a + 12\right)\cdot 19 + \left(18 a + 1\right)\cdot 19^{2} + \left(13 a + 8\right)\cdot 19^{3} + 11 a\cdot 19^{4} + \left(7 a + 5\right)\cdot 19^{5} + \left(14 a + 17\right)\cdot 19^{6} +O(19^{7})\) Copy content Toggle raw display
$r_{ 8 }$ $=$ \( 4 a + 10 + \left(9 a + 5\right)\cdot 19 + \left(13 a + 11\right)\cdot 19^{2} + \left(4 a + 15\right)\cdot 19^{3} + \left(12 a + 5\right)\cdot 19^{4} + \left(7 a + 12\right)\cdot 19^{5} + \left(14 a + 5\right)\cdot 19^{6} +O(19^{7})\) Copy content Toggle raw display

Generators of the action on the roots $r_1, \ldots, r_{ 8 }$

Cycle notation
$(1,8)(2,7)(3,6)(4,5)$
$(1,7,8,2)(3,5,6,4)$
$(2,6,5)(3,4,7)$
$(1,4,8,5)(2,3,7,6)$
$(2,3)(4,5)(6,7)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 8 }$ Character valueComplex conjugation
$1$$1$$()$$2$
$1$$2$$(1,8)(2,7)(3,6)(4,5)$$-2$
$12$$2$$(2,3)(4,5)(6,7)$$0$
$8$$3$$(1,3,2)(6,7,8)$$-1$
$6$$4$$(1,7,8,2)(3,5,6,4)$$0$
$8$$6$$(1,8)(2,3,5,7,6,4)$$1$
$6$$8$$(1,6,5,7,8,3,4,2)$$\zeta_{8}^{3} + \zeta_{8}$
$6$$8$$(1,3,5,2,8,6,4,7)$$-\zeta_{8}^{3} - \zeta_{8}$