Properties

Label 2.1999.9t3.a.c
Dimension 22
Group D9D_{9}
Conductor 19991999
Root number 11
Indicator 11

Related objects

Downloads

Learn more

Basic invariants

Dimension: 22
Group: D9D_{9}
Conductor: 19991999
Frobenius-Schur indicator: 11
Root number: 11
Artin stem field: Galois closure of 9.1.15968023992001.1
Galois orbit size: 33
Smallest permutation container: D9D_{9}
Parity: odd
Determinant: 1.1999.2t1.a.a
Projective image: D9D_9
Projective stem field: Galois closure of 9.1.15968023992001.1

Defining polynomial

f(x)f(x)== x93x82x7+3x6+19x5+39x4+85x3+66x2+108x+27 x^{9} - 3x^{8} - 2x^{7} + 3x^{6} + 19x^{5} + 39x^{4} + 85x^{3} + 66x^{2} + 108x + 27 Copy content Toggle raw display .

The roots of ff are computed in an extension of Q41\Q_{ 41 } to precision 5.

Minimal polynomial of a generator aa of KK over Q41\mathbb{Q}_{ 41 }: x3+x+35 x^{3} + x + 35 Copy content Toggle raw display

Roots:
r1r_{ 1 } == 3a2+14a+22+(24a2+31a+37)41+(3a2+36a+28)412+(23a+18)413+(9a2+12a+2)414+O(415) 3 a^{2} + 14 a + 22 + \left(24 a^{2} + 31 a + 37\right)\cdot 41 + \left(3 a^{2} + 36 a + 28\right)\cdot 41^{2} + \left(23 a + 18\right)\cdot 41^{3} + \left(9 a^{2} + 12 a + 2\right)\cdot 41^{4} +O(41^{5}) Copy content Toggle raw display
r2r_{ 2 } == 26a2+32a+37+(3a2+40a+15)41+(11a2+14a+8)412+(26a2+32a)413+(20a2+22a+15)414+O(415) 26 a^{2} + 32 a + 37 + \left(3 a^{2} + 40 a + 15\right)\cdot 41 + \left(11 a^{2} + 14 a + 8\right)\cdot 41^{2} + \left(26 a^{2} + 32 a\right)\cdot 41^{3} + \left(20 a^{2} + 22 a + 15\right)\cdot 41^{4} +O(41^{5}) Copy content Toggle raw display
r3r_{ 3 } == 15a2+15a+16+(24a2+34a+2)41+(12a2+30a+23)412+(2a2+37a+11)413+(15a2+13a+11)414+O(415) 15 a^{2} + 15 a + 16 + \left(24 a^{2} + 34 a + 2\right)\cdot 41 + \left(12 a^{2} + 30 a + 23\right)\cdot 41^{2} + \left(2 a^{2} + 37 a + 11\right)\cdot 41^{3} + \left(15 a^{2} + 13 a + 11\right)\cdot 41^{4} +O(41^{5}) Copy content Toggle raw display
r4r_{ 4 } == 35a+6+(13a2+6a+22)41+(17a2+36a+12)412+(12a2+11a+18)413+(5a2+4a+18)414+O(415) 35 a + 6 + \left(13 a^{2} + 6 a + 22\right)\cdot 41 + \left(17 a^{2} + 36 a + 12\right)\cdot 41^{2} + \left(12 a^{2} + 11 a + 18\right)\cdot 41^{3} + \left(5 a^{2} + 4 a + 18\right)\cdot 41^{4} +O(41^{5}) Copy content Toggle raw display
r5r_{ 5 } == 22a2+2a+17+(34a2+26a+15)41+(2a2+4a+15)412+(19a2+24a+11)413+(31a2+12a+23)414+O(415) 22 a^{2} + 2 a + 17 + \left(34 a^{2} + 26 a + 15\right)\cdot 41 + \left(2 a^{2} + 4 a + 15\right)\cdot 41^{2} + \left(19 a^{2} + 24 a + 11\right)\cdot 41^{3} + \left(31 a^{2} + 12 a + 23\right)\cdot 41^{4} +O(41^{5}) Copy content Toggle raw display
r6r_{ 6 } == 32a2+35a+10+(21a2+19a+34)41+(32a2+9a+7)412+(10a2+16a+33)413+(39a2+20a+14)414+O(415) 32 a^{2} + 35 a + 10 + \left(21 a^{2} + 19 a + 34\right)\cdot 41 + \left(32 a^{2} + 9 a + 7\right)\cdot 41^{2} + \left(10 a^{2} + 16 a + 33\right)\cdot 41^{3} + \left(39 a^{2} + 20 a + 14\right)\cdot 41^{4} +O(41^{5}) Copy content Toggle raw display
r7r_{ 7 } == 28a2+4a+21+(25a2+36a+9)41+(5a2+26a+17)412+(11a2+33)413+(11a2+8a+9)414+O(415) 28 a^{2} + 4 a + 21 + \left(25 a^{2} + 36 a + 9\right)\cdot 41 + \left(5 a^{2} + 26 a + 17\right)\cdot 41^{2} + \left(11 a^{2} + 33\right)\cdot 41^{3} + \left(11 a^{2} + 8 a + 9\right)\cdot 41^{4} +O(41^{5}) Copy content Toggle raw display
r8r_{ 8 } == 7a2+3a+11+(4a2+2a+24)41+(23a2+30a+14)412+(20a2+34a+32)413+(37a2+18a+7)414+O(415) 7 a^{2} + 3 a + 11 + \left(4 a^{2} + 2 a + 24\right)\cdot 41 + \left(23 a^{2} + 30 a + 14\right)\cdot 41^{2} + \left(20 a^{2} + 34 a + 32\right)\cdot 41^{3} + \left(37 a^{2} + 18 a + 7\right)\cdot 41^{4} +O(41^{5}) Copy content Toggle raw display
r9r_{ 9 } == 31a2+24a+27+(12a2+7a+2)41+(14a2+15a+36)412+(20a2+23a+4)413+(35a2+9a+20)414+O(415) 31 a^{2} + 24 a + 27 + \left(12 a^{2} + 7 a + 2\right)\cdot 41 + \left(14 a^{2} + 15 a + 36\right)\cdot 41^{2} + \left(20 a^{2} + 23 a + 4\right)\cdot 41^{3} + \left(35 a^{2} + 9 a + 20\right)\cdot 41^{4} +O(41^{5}) Copy content Toggle raw display

Generators of the action on the roots r1,,r9r_1, \ldots, r_{ 9 }

Cycle notation
(1,6)(2,3)(5,8)(7,9)(1,6)(2,3)(5,8)(7,9)
(1,5,3,9,7,2,8,6,4)(1,5,3,9,7,2,8,6,4)
(1,9,8)(2,4,3)(5,7,6)(1,9,8)(2,4,3)(5,7,6)

Character values on conjugacy classes

SizeOrderAction on r1,,r9r_1, \ldots, r_{ 9 } Character valueComplex conjugation
1111()()22
9922(1,6)(2,3)(5,8)(7,9)(1,6)(2,3)(5,8)(7,9)00
2233(1,9,8)(2,4,3)(5,7,6)(1,9,8)(2,4,3)(5,7,6)1-1
2299(1,5,3,9,7,2,8,6,4)(1,5,3,9,7,2,8,6,4)ζ95ζ92+ζ9-\zeta_{9}^{5} - \zeta_{9}^{2} + \zeta_{9}
2299(1,3,7,8,4,5,9,2,6)(1,3,7,8,4,5,9,2,6)ζ94+ζ92ζ9-\zeta_{9}^{4} + \zeta_{9}^{2} - \zeta_{9}
2299(1,7,4,9,6,3,8,5,2)(1,7,4,9,6,3,8,5,2)ζ95+ζ94\zeta_{9}^{5} + \zeta_{9}^{4}