Properties

Label 2.1680.8t11.c.b
Dimension $2$
Group $Q_8:C_2$
Conductor $1680$
Root number not computed
Indicator $0$

Related objects

Downloads

Learn more

Basic invariants

Dimension: $2$
Group: $Q_8:C_2$
Conductor: \(1680\)\(\medspace = 2^{4} \cdot 3 \cdot 5 \cdot 7 \)
Artin stem field: Galois closure of 8.0.3457440000.2
Galois orbit size: $2$
Smallest permutation container: $Q_8:C_2$
Parity: odd
Determinant: 1.420.2t1.a.a
Projective image: $C_2^2$
Projective field: Galois closure of \(\Q(\sqrt{15}, \sqrt{-21})\)

Defining polynomial

$f(x)$$=$ \( x^{8} - 5x^{6} + 14x^{4} - 15x^{2} + 9 \) Copy content Toggle raw display .

The roots of $f$ are computed in $\Q_{ 71 }$ to precision 5.

Roots:
$r_{ 1 }$ $=$ \( 6 + 66\cdot 71 + 30\cdot 71^{2} + 32\cdot 71^{3} + 6\cdot 71^{4} +O(71^{5})\) Copy content Toggle raw display
$r_{ 2 }$ $=$ \( 10 + 62\cdot 71 + 3\cdot 71^{2} + 24\cdot 71^{3} + 11\cdot 71^{4} +O(71^{5})\) Copy content Toggle raw display
$r_{ 3 }$ $=$ \( 17 + 36\cdot 71 + 50\cdot 71^{2} + 21\cdot 71^{3} + 61\cdot 71^{4} +O(71^{5})\) Copy content Toggle raw display
$r_{ 4 }$ $=$ \( 19 + 28\cdot 71 + 14\cdot 71^{2} + 55\cdot 71^{3} + 66\cdot 71^{4} +O(71^{5})\) Copy content Toggle raw display
$r_{ 5 }$ $=$ \( 52 + 42\cdot 71 + 56\cdot 71^{2} + 15\cdot 71^{3} + 4\cdot 71^{4} +O(71^{5})\) Copy content Toggle raw display
$r_{ 6 }$ $=$ \( 54 + 34\cdot 71 + 20\cdot 71^{2} + 49\cdot 71^{3} + 9\cdot 71^{4} +O(71^{5})\) Copy content Toggle raw display
$r_{ 7 }$ $=$ \( 61 + 8\cdot 71 + 67\cdot 71^{2} + 46\cdot 71^{3} + 59\cdot 71^{4} +O(71^{5})\) Copy content Toggle raw display
$r_{ 8 }$ $=$ \( 65 + 4\cdot 71 + 40\cdot 71^{2} + 38\cdot 71^{3} + 64\cdot 71^{4} +O(71^{5})\) Copy content Toggle raw display

Generators of the action on the roots $r_1, \ldots, r_{ 8 }$

Cycle notation
$(1,8)(2,7)(3,6)(4,5)$
$(1,4)(2,3)(5,8)(6,7)$
$(2,7)(4,5)$
$(1,2)(3,5)(4,6)(7,8)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 8 }$ Character valueComplex conjugation
$1$$1$$()$$2$
$1$$2$$(1,8)(2,7)(3,6)(4,5)$$-2$
$2$$2$$(1,4)(2,3)(5,8)(6,7)$$0$
$2$$2$$(1,2)(3,5)(4,6)(7,8)$$0$
$2$$2$$(2,7)(4,5)$$0$
$1$$4$$(1,6,8,3)(2,4,7,5)$$2 \zeta_{4}$
$1$$4$$(1,3,8,6)(2,5,7,4)$$-2 \zeta_{4}$
$2$$4$$(1,5,8,4)(2,3,7,6)$$0$
$2$$4$$(1,6,8,3)(2,5,7,4)$$0$
$2$$4$$(1,7,8,2)(3,4,6,5)$$0$