Properties

Label 2.1680.4t3.e.a
Dimension $2$
Group $D_{4}$
Conductor $1680$
Root number $1$
Indicator $1$

Related objects

Downloads

Learn more

Basic invariants

Dimension: $2$
Group: $D_{4}$
Conductor: \(1680\)\(\medspace = 2^{4} \cdot 3 \cdot 5 \cdot 7 \)
Frobenius-Schur indicator: $1$
Root number: $1$
Artin stem field: Galois closure of 4.0.33600.1
Galois orbit size: $1$
Smallest permutation container: $D_{4}$
Parity: odd
Determinant: 1.420.2t1.a.a
Projective image: $C_2^2$
Projective field: Galois closure of \(\Q(\sqrt{-5}, \sqrt{21})\)

Defining polynomial

$f(x)$$=$ \( x^{4} - 2x^{3} + 8x^{2} - 2x + 1 \) Copy content Toggle raw display .

The roots of $f$ are computed in $\Q_{ 41 }$ to precision 5.

Roots:
$r_{ 1 }$ $=$ \( 12 + 14\cdot 41 + 30\cdot 41^{2} + 29\cdot 41^{3} + 3\cdot 41^{4} +O(41^{5})\) Copy content Toggle raw display
$r_{ 2 }$ $=$ \( 23 + 14\cdot 41 + 27\cdot 41^{2} + 21\cdot 41^{3} + 38\cdot 41^{4} +O(41^{5})\) Copy content Toggle raw display
$r_{ 3 }$ $=$ \( 24 + 9\cdot 41 + 14\cdot 41^{2} + 7\cdot 41^{3} + 29\cdot 41^{4} +O(41^{5})\) Copy content Toggle raw display
$r_{ 4 }$ $=$ \( 25 + 2\cdot 41 + 10\cdot 41^{2} + 23\cdot 41^{3} + 10\cdot 41^{4} +O(41^{5})\) Copy content Toggle raw display

Generators of the action on the roots $r_1, \ldots, r_{ 4 }$

Cycle notation
$(1,2)(3,4)$
$(1,3)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 4 }$ Character valueComplex conjugation
$1$$1$$()$$2$
$1$$2$$(1,3)(2,4)$$-2$
$2$$2$$(1,2)(3,4)$$0$
$2$$2$$(1,3)$$0$
$2$$4$$(1,4,3,2)$$0$