Properties

Label 2.1488.4t3.a
Dimension $2$
Group $D_{4}$
Conductor $1488$
Indicator $1$

Related objects

Downloads

Learn more

Basic invariants

Dimension:$2$
Group:$D_{4}$
Conductor:\(1488\)\(\medspace = 2^{4} \cdot 3 \cdot 31 \)
Frobenius-Schur indicator: $1$
Root number: $1$
Artin number field: Galois closure of 4.0.4464.1
Galois orbit size: $1$
Smallest permutation container: $D_{4}$
Parity: odd
Projective image: $C_2^2$
Projective field: Galois closure of \(\Q(\sqrt{-3}, \sqrt{31})\)

Galois action

Roots of defining polynomial

The roots of $f$ are computed in $\Q_{ 127 }$ to precision 5.
Roots:
$r_{ 1 }$ $=$ \( 5 + 42\cdot 127 + 89\cdot 127^{2} + 26\cdot 127^{3} + 60\cdot 127^{4} +O(127^{5})\) Copy content Toggle raw display
$r_{ 2 }$ $=$ \( 42 + 16\cdot 127 + 68\cdot 127^{2} + 111\cdot 127^{3} + 38\cdot 127^{4} +O(127^{5})\) Copy content Toggle raw display
$r_{ 3 }$ $=$ \( 85 + 110\cdot 127 + 58\cdot 127^{2} + 15\cdot 127^{3} + 88\cdot 127^{4} +O(127^{5})\) Copy content Toggle raw display
$r_{ 4 }$ $=$ \( 122 + 84\cdot 127 + 37\cdot 127^{2} + 100\cdot 127^{3} + 66\cdot 127^{4} +O(127^{5})\) Copy content Toggle raw display

Generators of the action on the roots $r_1, \ldots, r_{ 4 }$

Cycle notation
$(1,4)$
$(1,2)(3,4)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 4 }$ Character values
$c1$
$1$ $1$ $()$ $2$
$1$ $2$ $(1,4)(2,3)$ $-2$
$2$ $2$ $(1,2)(3,4)$ $0$
$2$ $2$ $(1,4)$ $0$
$2$ $4$ $(1,3,4,2)$ $0$
The blue line marks the conjugacy class containing complex conjugation.